Skip to main content

Probabilistisches Belegtheitsfilter zur Schätzung dynamischer Umgebungen unter Verwendung multipler Bewegungsmodelle

  • Conference paper
Autonome Mobile Systeme 2009

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2844 Accesses

Zusammenfassung

In dieser Arbeit wird eine Erweiterung des zeilbasierten Belegtheitsfilters BOFUM1 um Objektgruppen zum BOFUG (Bayesian Occupancy Filtering using Groups) vorgenommen. Diese ermöglicht die Einteilung und Klassifikation der Gruppenzugehörigkeit von Belegtheit, allein auf Basis von statischen Belegtheitsmessungen. Exemplarisch wird für Fußgänger und Fahrzeuge gezeigt, dass die Definition unterschiedlicher Dynamikmodelle ausreicht, um auf Objektinformationen zu schließen und das Filterergebnis nachhaltig zu verbessern. Die implizite Gruppeninferenz stellt einen ersten Schritt zur Vereinigung von Objekt- und Zellebene dar.

Bayesian Recursive Estimation for Cells handling Transition Knowledge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literaturverzeichnis

  1. Y. Bar-Shalom. Multitarget-multisensor tracking: Applications and advances. Volume III. Norwood, MA: Artech House, 2000.

    Google Scholar 

  2. S. Blackman and R. Popoli. Design and analysis of modern tracking systems. Norwood, MA: Artech House, 1999.

    MATH  Google Scholar 

  3. C. Chen, C. Tay, K. Mekhnacha, and C. Laugier. Dynamic environment modeling with gridmap: a multiple-object tracking application. Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th International Conference on, pages 1–6, 2006.

    Google Scholar 

  4. C. Coue, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessiere. Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application. The International Journal of Robotics Research, 25(1):19, 2006.

    Article  Google Scholar 

  5. A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer, 22(6):46–57, 1989.

    Article  Google Scholar 

  6. C. Fulgenzi, A. Spalanzani, and C. Laugier. Dynamic Obstacle Avoidance in uncertain environment combining PVOs and Occupancy Grid. Robotics and Automation, y2007 IEEE International Conference on, pages 1610–1616, 2007.

    Google Scholar 

  7. Tobias Gindele, Sebastian Brechtel, Joachim Schröder, and Rüdiger Dillmann. Bayesian Occupancy Grid Filter for Dynamic Environments Using Prior Map Knowledge. Proceedings of the IEEE Intelligent Vehicles Symposium, 2009.

    Google Scholar 

  8. E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting multiple model methods in target tracking: a survey. Aerospace and Electronic Systems, IEEE Transactions on, 34(1):103–123, 1998.

    Article  Google Scholar 

  9. MK Tay, K. Mekhnacha, M. Yguel, C. Cou’e, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière. The Bayesian occupation filter. Technical report, INRIA, 2008.

    Google Scholar 

  10. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT press, Cambridge, Massachusetts, USA, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brechtel, S., Gindele, T., Vogelgesang, J., Dillmann, R. (2009). Probabilistisches Belegtheitsfilter zur Schätzung dynamischer Umgebungen unter Verwendung multipler Bewegungsmodelle. In: Dillmann, R., Beyerer, J., Stiller, C., Zöllner, J.M., Gindele, T. (eds) Autonome Mobile Systeme 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10284-4_7

Download citation

Publish with us

Policies and ethics