Abstract
In this paper we address the problem of tuning parameters of a biological model, in particular a simulator of stochastic processes. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. We tackle the problem with a metaheuristic algorithm for continuous variables, Particle swarm optimisation, and show the effectiveness of the method in a prominent case-study, namely the mitogen-activated protein kinase cascade.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alves, R., Antunes, F., Salvador, A.: Tools for kinetic modeling of biochemical networks. Nature Biotechnology 24(6), 667–672 (2006)
Banga, J.: Optimization in computational systems biology. BMC Bioinformatics 2(7) (2008)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)
Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2004)
Clerc, M.: Particle Swarm Optimization. ISTE (2006)
De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)
Hoos, H., Stützle, T.: Stochastic Local Search Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)
Huang, C.-Y.F., Ferrell, J.E.J.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proceedings of the National Academy of Sciences of the United States of America 93(19), 10078–10083 (1996)
Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the 22nd Conference on Artificial Intelligence (AAAI 2007), pp. 1152–1157 (2007)
Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)
Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. European Journal of Biochemistry 267(6), 1583–1588 (2000)
Montagna, S., Viroli, M.: A computational framework for modelling multicellular biochemistry. In: IEEE CEC 2009 Preceedings, Trondheim, Norway, May 18–21 (2009)
Phillips, A.: The Stochastic Pi Machine, SPiM (2007), Version 0.05, http://research.microsoft.com/~aphillip/spim/
Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. In: Transactions on Computational Systems Biology VII. LNCS, pp. 123–152. Springer, Heidelberg (2006)
Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)
Rodriguez-Fernandez, M., Egea, J., Banga, J.: Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics 7(483) (2006)
Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cell Biology - From Concepts to Nuts and Bolts. MIT Press, Cambridge (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Montagna, S., Roli, A. (2009). Parameter Tuning of a Stochastic Biological Simulator by Metaheuristics. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-10291-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10290-5
Online ISBN: 978-3-642-10291-2
eBook Packages: Computer ScienceComputer Science (R0)