Abstract
The purpose of this paper is to present new texture descriptors dedicated to segmentation of solid textures. The proposed texture attributes are inspired by the human description of texture and allows a general description of texture. Moreover it is more convenient for a user to understand features signification particularly in a man-aided application. In comparison with psychological measurements for human subjects, our characteristics gave good correspondences in rank correlation of 12 different solid textures. Using these texture features, segmentation results obtained with the classical K-means method on solid textures and real three-dimensional ultrasound images of the skin are presented and discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tuceryan, M., Jain, A.K.: 2.1. In: Texture Analysis. The Handbook of Pattern Recognition and Computer Vision, pp. 207–248 (1998)
Haralick, R.M.: Statistical and structural approaches to textures. Proceedings of the IEEE 67(5), 786–804 (1979)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3(6), 610–621 (1973)
Tuceryan, M., Jain, A.K.: Texture segmentation using voronoi polygons. IEEE Transactions On Pattern Analysis And Machine Intelligence 12, 211–216 (1990)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE transaction on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)
Chellappa, R., Jain, A.K.: Markov Random Fields Theory and Application. Academic Press, London (1993)
Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE transaction on Systems, Man, Cybernetics 8(6), 460–473 (1978)
Amadasun, M., King, R.: Texture features corresponding to textural properties. IEEE transactions on Systems, Man and Cybernetics 19(5), 1264–1274 (1989)
Suzuki, M.T., Yoshitomo, Y., Osawa, N., Sugimoto, Y.: Classification of solid textures using 3d mask patterns. In: ICSMC 2004: International Conference on Systems, Man and Cybernetics (2004)
Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)
Coleman, G., Andrews, H.: Image segmentation by clustering. Proceedings of the IEEE, 773–785 (1979)
Shoshany, M.: An evolutionary patch pattern approach for texture discrimination. Pattern Recognition 41, 2327–2336 (2008)
Chassery, J.M., Montanvert, A.: Géométrie discrète en analyse d’images (1991)
Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35, 735–747 (2002)
Goyal, R., Goh, W., Mital, D., Chan, K.: Scale and rotation invariant texture analysis based on structural property. In: IECON 1995: Proceedings on the International Conference on Industrial Electronics, Control, and Instrumentation (1995)
Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 4, 1549–1560 (1995)
Muneeswaran, K., Ganesan, L., Arumugam, S., Soundar, K.R.: Texture classification with combined rotation and scale invariant wavelet features. Pattern Recognition 38, 1495–1506 (2005)
Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture synthesis from 2d exemplars. In: SIGGRAPH 2007: Proceedings of the 34th International Conference and Exhibition on Computer Graphics and Interactive Techniques (2007)
Paulhac, L., Makris, P., Ramel, J.Y.: A solid texture database for segmentation and classification experiments. In: VISSAPP 2009: Proceedings of the Fourth International Conference on Computer Vision Theory and Applications (2009)
Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Transaction on Image Processing 14(11), 1773–1782 (2005)
Gusfield, D.: Partition-distance: A problem and class of perfect graphs arising in clustering. Information Processing Letters 82(9), 159–164 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paulhac, L., Makris, P., Gregoire, JM., Ramel, JY. (2009). Human Understandable Features for Segmentation of Solid Texture. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-10331-5_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10330-8
Online ISBN: 978-3-642-10331-5
eBook Packages: Computer ScienceComputer Science (R0)