Skip to main content

Image Registration Guided by Particle Filter

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

  • 1730 Accesses

Abstract

Image Registration is a central task to different applications, such as medical image analysis, stereo computer vision, and optical flow estimation. One way to solve this problem consists in using Bayesian Estimation theory. Under this approach, this work introduces a new alternative, based on Particle Filters, which have been previously used to estimate the states of dynamic systems. For this work, we have adapted the Particle Filter to carry out the registration of unimodal and multimodal images, and performed a series of preliminary tests, where the proposed method has proved to be efficient, robust, and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  2. Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press, Boca Raton (2001)

    Google Scholar 

  3. Zitova, B., Flusser, J.: Image Registration Methods: a survey. Image and Vision Computing 21, 977–1000 (2003)

    Article  Google Scholar 

  4. Brown, L.G.: A survey of image registration techniques. ACM Computing Survey 24, 326–376 (1992)

    Article  Google Scholar 

  5. Hill, D.L.G., Hawkes, D.J.: Across-modality registration using intensity-based cost functions. In: Bankman, I. (ed.) Handbook of Medical Imaging: Processing and Analysis, pp. 537–553. Academic, New York (2000)

    Chapter  Google Scholar 

  6. Ding, E., Kularatna, T., Satter, M.: Volumetric image registration by template matching. In: Medical Imaging 2000, pp. 1235–1246. SPIE, Bellinham (2000)

    Google Scholar 

  7. Shekhar, R., Zagrodsky, V.: Mutual Information-based rigid and non-rigid registration of ultrasound volumes. IEEE Transactions on Medical Imaging 21, 9–22 (2002)

    Article  Google Scholar 

  8. Viola, P.A., Wells III, W.M.: Alignment by maximization of mutual information. In: Proc. 5th Int. Conf. Computer Visiom, Cambridge, MA, pp. 16–23 (1995)

    Google Scholar 

  9. Wells III, W.M., Viola, P.A., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal Volumen Registration by Maximization of Mutual Information. In: Medical Image Analysis, vol. 1, pp. 35–51 (1996)

    Google Scholar 

  10. Collignon, A., Maes, F., Delaere, D., Vadermeulen, D., Suetens, P., Marchal, G.: Automated multimodality medical image registration using information theory. In: Bizais, Y., Barillot, C., Di Paola, R. (eds.) Proc. 14th Int. Conf. Process Med. Imag., Ile de Berder, France, pp. 263–274 (1995)

    Google Scholar 

  11. Maes, F., Collignon, A., Vadermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE-Trans. Med. Image. 16(2), 187–198 (1997)

    Article  Google Scholar 

  12. Periaswamya, S., Farid, H.: Medical image registration with partial data. Medical Image Analisys 10(3), 452–464 (2006)

    Article  Google Scholar 

  13. Arce-Santana, E.R., Alba, A.: Image registration using Markov random coefficient and geometric transformation fields. Pattern Recognition 42, 1660–1671 (2009)

    Article  MATH  Google Scholar 

  14. Arce-Santana, E.R., Alba, A.: Image Registration Using Markov Random Coefficient Fields. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 306–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Marroquin, J.L., Arce, E., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1380–1387 (2003)

    Article  Google Scholar 

  16. Sanjeev Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transaction on Signal Processing 50, 174–188 (2002)

    Article  Google Scholar 

  17. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter. In: Particle Filter for Tracking Applications. Artech House (2004)

    Google Scholar 

  18. Doucet, A.: On sequential Monte Carlo methods for Bayesian filtering, Dept. Eng., Univ. Cambridge, UK, Tech. Rep. (1998)

    Google Scholar 

  19. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction, 2nd edn. Springer, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arce-Santana, E.R., Campos-Delgado, D.U., Alba, A. (2009). Image Registration Guided by Particle Filter. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics