Abstract
Image Registration is a central task to different applications, such as medical image analysis, stereo computer vision, and optical flow estimation. One way to solve this problem consists in using Bayesian Estimation theory. Under this approach, this work introduces a new alternative, based on Particle Filters, which have been previously used to estimate the states of dynamic systems. For this work, we have adapted the Particle Filter to carry out the registration of unimodal and multimodal images, and performed a series of preliminary tests, where the proposed method has proved to be efficient, robust, and easy to implement.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds.): Medical Image Registration. CRC Press, Boca Raton (2001)
Zitova, B., Flusser, J.: Image Registration Methods: a survey. Image and Vision Computing 21, 977–1000 (2003)
Brown, L.G.: A survey of image registration techniques. ACM Computing Survey 24, 326–376 (1992)
Hill, D.L.G., Hawkes, D.J.: Across-modality registration using intensity-based cost functions. In: Bankman, I. (ed.) Handbook of Medical Imaging: Processing and Analysis, pp. 537–553. Academic, New York (2000)
Ding, E., Kularatna, T., Satter, M.: Volumetric image registration by template matching. In: Medical Imaging 2000, pp. 1235–1246. SPIE, Bellinham (2000)
Shekhar, R., Zagrodsky, V.: Mutual Information-based rigid and non-rigid registration of ultrasound volumes. IEEE Transactions on Medical Imaging 21, 9–22 (2002)
Viola, P.A., Wells III, W.M.: Alignment by maximization of mutual information. In: Proc. 5th Int. Conf. Computer Visiom, Cambridge, MA, pp. 16–23 (1995)
Wells III, W.M., Viola, P.A., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal Volumen Registration by Maximization of Mutual Information. In: Medical Image Analysis, vol. 1, pp. 35–51 (1996)
Collignon, A., Maes, F., Delaere, D., Vadermeulen, D., Suetens, P., Marchal, G.: Automated multimodality medical image registration using information theory. In: Bizais, Y., Barillot, C., Di Paola, R. (eds.) Proc. 14th Int. Conf. Process Med. Imag., Ile de Berder, France, pp. 263–274 (1995)
Maes, F., Collignon, A., Vadermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE-Trans. Med. Image. 16(2), 187–198 (1997)
Periaswamya, S., Farid, H.: Medical image registration with partial data. Medical Image Analisys 10(3), 452–464 (2006)
Arce-Santana, E.R., Alba, A.: Image registration using Markov random coefficient and geometric transformation fields. Pattern Recognition 42, 1660–1671 (2009)
Arce-Santana, E.R., Alba, A.: Image Registration Using Markov Random Coefficient Fields. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 306–317. Springer, Heidelberg (2008)
Marroquin, J.L., Arce, E., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1380–1387 (2003)
Sanjeev Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transaction on Signal Processing 50, 174–188 (2002)
Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter. In: Particle Filter for Tracking Applications. Artech House (2004)
Doucet, A.: On sequential Monte Carlo methods for Bayesian filtering, Dept. Eng., Univ. Cambridge, UK, Tech. Rep. (1998)
Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction, 2nd edn. Springer, New York (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arce-Santana, E.R., Campos-Delgado, D.U., Alba, A. (2009). Image Registration Guided by Particle Filter. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-10331-5_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10330-8
Online ISBN: 978-3-642-10331-5
eBook Packages: Computer ScienceComputer Science (R0)