Skip to main content

Depth from Encoded Sliding Projections

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

Abstract

We present a novel method for 3D shape acquisition, based on mobile structured light. Unlike classical structured light methods, in which a static projector illuminates the scene with dynamic illumination patterns, mobile structured light employs a moving projector translated at a constant velocity in the direction of the projector’s horizontal axis, emitting static or dynamic illumination. For our approach, a time multiplexed mix of two signals is used: (1) a wave pattern, enabling the recovery of point-projector distances for each point observed by the camera, and (2) a 2D De Bruijn pattern, used to uniquely encode a sparse subset of projector pixels. Based on this information, retrieved on a per (camera) pixel basis, we are able to estimate a sparse reconstruction of the scene. As this sparse set of 2D-3D camera-scene correspondences is sufficient to recover the camera location and orientation within the scene, we are able to convert the dense set of point-projector distances into a dense set of camera depths, effectively providing us with a dense reconstruction of the observed scene. We have verified our technique using both synthetic and real-world data. Our experiments display the same level of robustness as previous mobile structured light methods, combined with the ability to accurately estimate dense scene structure and accurate camera/projector motion without the need for prior calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  2. Posdamer, J., Altschuler, M.: Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing 18, 1–17 (1982)

    Article  Google Scholar 

  3. Boyer, K.L., Kak, A.C.: Color-encoded structured light for rapid active ranging. PAMI 9, 14–28 (1987)

    Google Scholar 

  4. Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognition 31, 963–982 (1998)

    Article  Google Scholar 

  5. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of CVPR, p. 195 (2003)

    Google Scholar 

  6. Chen, T., Lensch, H.P.A., Fuchs, C., Seidel, H.: Polarization and phase-shifting for 3d scanning of translucent objects. In: Proceedings of CVPR, pp. 1829–1836 (2007)

    Google Scholar 

  7. Hermans, C., Francken, Y., Cuypers, T., Bekaert, P.: Depth from sliding projections. In: Proceedings of CVPR, pp. 1865–1872 (2009)

    Google Scholar 

  8. Chen, T., Seidel, H., Lensch, H.: Modulated phase-shifting for 3D scanning. In: Proceedings of CVPR, pp. 1–8 (2008)

    Google Scholar 

  9. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of SIGGRAPH, New York, NY, USA, pp. 117–128 (2001)

    Google Scholar 

  10. Nayar, S., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination. In: Proceedings in SIGGRAPH (2006)

    Google Scholar 

  11. Zhang, L., Nayar, S.K.: Projection Defocus Analysis for Scene Capture and Image Display. In: Proceedings of SIGGRAPH (2006)

    Google Scholar 

  12. Gupta, M., Tian, Y., Narasimhan, S., Zhang, L.: (de)focusing on global light transport for active scene recovery. In: Proceedings of CVPR, pp. 2969–2976 (2009)

    Google Scholar 

  13. Moreno-Noguer, F., Belhumeur, P., Nayar, S.: Active Refocusing of Images and Videos. In: Proceedings of SIGGRAPH (2007)

    Google Scholar 

  14. Nayar, S.K., Nakagawa, Y.: Shape from focus. PAMI 16, 824–831 (1994)

    Google Scholar 

  15. Watanabe, M., Nayar, S.K.: Rational filters for passive depth from defocus. IJCV 27, 203–225 (1998)

    Article  Google Scholar 

  16. Hasinoff, S.W., Kutulakos, K.N.: Confocal stereo. IJCV 81, 82–104 (2009)

    Article  Google Scholar 

  17. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  18. Steven, M.S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of CVPR, pp. 519–528 (2006)

    Google Scholar 

  19. Bolles, R., Baker, H., Marimont, D.: Epipolar-plane image analysis: An approach to determining structure from motion. IJCV 1, 7–55 (1987)

    Article  Google Scholar 

  20. Sturm, P.F., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Proceedings of ECCV, pp. 709–720 (1996)

    Google Scholar 

  21. Pollefeys, M., Gool, L.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. IJCV 59, 207–232 (2004)

    Article  Google Scholar 

  22. Vuylsteke, P., Oosterlinck, A.: Range image acquisition with a single binary-encoded light pattern. PAMI 12, 148–164 (1990)

    Google Scholar 

  23. Young, M., Beeson, E., Davis, J., Rusinkiewicz, S., Ramamoorthi, R.: Viewpoint-coded structured light. In: Proceedings of CVPR (2007)

    Google Scholar 

  24. Zhang, S., Yau, S.: High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. Optics Express 14, 2644–2649 (2006)

    Article  Google Scholar 

  25. Wolff, L.: Using polarization to separate reflection components. In: Proceedings of CVPR, pp. 363–369 (1989)

    Google Scholar 

  26. Hullin, M.B., Fuchs, M., Ihrke, I., Seidel, H., Lensch, H.P.A.: Fluorescent immersion range scanning. In: Proceedings of SIGGRAPH, pp. 1–10 (2008)

    Google Scholar 

  27. Liao, M., Wang, L., Yang, R., Gong, M.: Light fall-off stereo. In: Proceedings of CVPR, pp. 1–8 (2007)

    Google Scholar 

  28. Golomb, S.: Shift register sequences. Aegean Park Press, Laguna Hills (1981)

    Google Scholar 

  29. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermans, C., Francken, Y., Cuypers, T., Bekaert, P. (2009). Depth from Encoded Sliding Projections. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics