Skip to main content

CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds

  • Conference paper
Motion in Games (MIG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5884))

Included in the following conference series:

Abstract

The new wave of computer-driven entertainment technology throws audiences and game players into massive virtual worlds where entire cities are rendered in real time. Computer animated characters run through inner-city streets teeming with pedestrians, all fully rendered with 3D graphics, animations, particle effects and linked to 3D sound effects to produce more realistic and immersive computer-hosted entertainment experiences than ever before. Computing all of this detail at once is enormously computationally expensive, and game designers as a rule, have sacrificed the behavioural realism in favour of better graphics. In this paper we propose a new Collision Avoidance Level of Detail (CA-LOD) algorithm that allows games to support huge crowds in real time with the appearance of more intelligent behaviour. We propose two collision avoidance models used for two different CA-LODs: a fuzzy steering focusing on the performances, and a geometric steering to obtain the best realism. Mixing these approaches allows to obtain thousands of autonomous characters in real time, resulting in a scalable but still controllable crowd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hamill, J., O’Sullivan, C.: Virtual dublin - a framework for real-time urban simulation. In: Proc. of the Winter Conference on Computer Graphics, vol. 11, pp. 1–3 (2003)

    Google Scholar 

  2. Peters, C., Ennis, C.: Modeling groups of plausible virtual pedestrians. IEEE Computer Graphics and Applications 29(4), 54–63 (2009)

    Article  Google Scholar 

  3. Wimmer, M., Bittner, J.: Hardware occlusion queries made useful. In: Pharr, M., Fernando, R. (eds.) GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Addison-Wesley, Reading (2005)

    Google Scholar 

  4. Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier Science Inc., New York (2002)

    Google Scholar 

  5. Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors: a real-time geometry/impostor crowd rendering system. ACM Trans. Graph. 24(3), 933 (2005)

    Article  Google Scholar 

  6. Yersin, B., Maim, J., Pettré, J., Thalmann, D.: Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications. In: I3D 2009 (2009)

    Google Scholar 

  7. Pettré, J., de Ciechomski, P.H., Maïm, J., Yersin, B., Laumond, J.P., Thalmann, D.: Real-time navigating crowds: scalable simulation and rendering. Computer Animation and Virtual Worlds 17(3-4), 445–455 (2006)

    Article  Google Scholar 

  8. Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach for crowd simulation. Computer Graphics and Applications (CGA) special issue Virtual Populace 29(4), 24–33 (2009)

    Google Scholar 

  9. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Metaxas, D., Popovic, J. (eds.) Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, pp. 119–128 (2007)

    Google Scholar 

  10. O’Sullivan, C., Cassell, J., Vilhjálmsson, H., Dingliana, J., Dobbyn, S., McNamee, B., Peters, C., Giang, T.: Levels of detail for crowds and groups. Computer Graphics Forum 21(4), 733–741 (2003)

    Article  Google Scholar 

  11. Paris, S., Donikian, S., Bonvalet, N.: Environmental abstraction and path planning techniques for realistic crowd simulation. Computer Animation and Virtual Worlds 17, 325–335 (2006)

    Article  Google Scholar 

  12. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference 1999 (1999)

    Google Scholar 

  13. Lamarche, F., Donikian, S.: Crowds of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum 23, 509–518 (2004)

    Article  Google Scholar 

  14. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. In: Computer Graphics Forum, Eurographics 2007, vol. 26(3), pp. 665–674 (2007)

    Google Scholar 

  15. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1), 1–24 (2005)

    Article  Google Scholar 

  16. Paris, S., Mekni, M., Moulin, B.: Informed virtual geographic environments: an accurate topological approach. In: The International Conference on Advanced Geographic Information Systems & Web Services (GEOWS). IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  17. Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  18. Gerdelan, A.P.: A solution for streamlining intelligent agent-based traffic into 3d simulations and games. Technical Report CSTN-072, IIMS, Massey University, North Shore 102-904, Auckland, New Zealand (January 2009)

    Google Scholar 

  19. Gerdelan, A.P.: Driving intelligence: A new architecture and novel hybrid algorithm for next-generation urban traffic simulation. Technical Report CSTN-079, Institute of Information and Mathematical Sciences, Massey University, North Shore 102-904, Auckland, New Zealand (February 2009)

    Google Scholar 

  20. Dougherty, M., Fox, K., Cullip, M., Boero, M.: Technological advances that impact on microsimulation modelling. Transport Reviews 20(2), 145–171 (2000)

    Article  Google Scholar 

  21. Gerdelan, A.P., Reyes, N.H.: Towards a generalised hybrid path-planning and motion control system with auto-calibration for animated characters in 3d environments. In: Advances in Neuro-Information Processing. LNCS, vol. 5507, pp. 25–28. Springer, Heidelberg (2008)

    Google Scholar 

  22. Gerdelan, A.P.: Architecture design for self-training intelligent vehicle-driving agents: paradigms and tools. Technical Report CSTN-088, Institute of Information and Mathematical Sciences, Massey University, North Shore 102-904, Auckland, New Zealand (April 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paris, S., Gerdelan, A., O’Sullivan, C. (2009). CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds. In: Egges, A., Geraerts, R., Overmars, M. (eds) Motion in Games. MIG 2009. Lecture Notes in Computer Science, vol 5884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10347-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10347-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10346-9

  • Online ISBN: 978-3-642-10347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics