Abstract
Following the cryptanalyses of the encryption scheme HFE and of the signature scheme SFLASH, no serious alternative multivariate cryptosystems remained, except maybe the signature schemes UOV and HFE− −. Recently, two proposals have been made to build highly efficient multivariate cryptosystems around a quadratic internal transformation: the first one is a signature scheme called square-vinegar and the second one is an encryption scheme called square introduced at CT-RSA 2009.
In this paper, we present a total break of both the square-vinegar signature scheme and the square encryption scheme. For the practical parameters proposed by the authors of these cryptosystems, the complexity of our attacks is about 235 operations. All the steps of the attack have been implemented in the Magma computer algebra system and allowed to experimentally assess the results presented in this paper.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Akkar, M.-L., Courtois, N., Goubin, L., Duteuil, R.: A Fast and Secure Implementation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)
Baena, J., Clough, C., Ding, J.: Square-vinegar signature scheme. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg (2008)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997)
Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-S.: Square, a New Multivariate Encryption Scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)
Ding, J., Wolf, C., Yang, B.-Y.: ℓ-Invertible Cycles for Multivariate Quadratic Public Key Cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007)
Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)
Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)
Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)
Fouque, P.-A., Macario-Rat, G., Stern, J.: Key Recovery on Hidden Monomial Multivariate Schemes. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 19–30. Springer, Heidelberg (2008)
Geiselmann, W., Steinwandt, R., Beth, T.: Attacking the Affine Parts of SFLASH. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 355–359. Springer, Heidelberg (2001)
Granboulan, L., Joux, A., Stern, J.: Inverting HFE is Quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)
Imai, H., Matsumoto, T.: Algebraic Methods for Constructing Asymmetric Cryptosystems. In: Calmet, J. (ed.) AAECC 1985. LNCS, vol. 229, pp. 108–119. Springer, Heidelberg (1986)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of mathematics and its applications, vol. 20. Cambridge university press, Cambridge (2003)
Matsumoto, T., Imai, H.: Public Quadratic Polynominal Tuples for Efficient Signature Verification and Message Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
Patarin, J.: Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: Hidden fields equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Patarin, J.: The Oil and Vinegar Algorithm for Signatures. Presented at the Dagsthul Workshop on Cryptography (September 1997)
Patarin, J., Goubin, L., Courtois, N.T.: Improved Algorithms for Isomorphisms of Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)
Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)
Shamir, A., Kipnis, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)
Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Sci. Stat. Comp. 26, 1484 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Billet, O., Macario-Rat, G. (2009). Cryptanalysis of the Square Cryptosystems. In: Matsui, M. (eds) Advances in Cryptology – ASIACRYPT 2009. ASIACRYPT 2009. Lecture Notes in Computer Science, vol 5912. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10366-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-10366-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10365-0
Online ISBN: 978-3-642-10366-7
eBook Packages: Computer ScienceComputer Science (R0)