Skip to main content

A Statistical Approach to Test Stochastic and Probabilistic Systems

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5885))

Included in the following conference series:

  • 969 Accesses

Abstract

In this paper we introduce a formal framework to test systems where non-deterministic decisions are probabilistically quantified and temporal information is defined by using random variables. We define an appropriate extension of the classical finite state machines formalism, widely used in formal testing approaches, to define the systems that we are interested in. First, we define a conformance relation to establish, with respect to a given specification, what a good implementation is. In order to decide whether a system is conforming, we apply different statistic techniques to determine whether the (unknown) probabilities and random variables governing the behaviour of the implementation match the (known) ones of the specification. Next, we introduce a notion of test case. Finally, we give an alternative characterization of the previous conformance relation based on how a set of test is passed by the implementation.

Research supported by the Spanish MEC project WEST/FAST (TIN2006-15578-C02-01), the MATES project (CCG08-UCM/TIC-4124) and by the UCM-BSCH programme to fund research groups (GR58/08 - group number 910606).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agresti, A., Coull, B.A.: Approximate is better than exact for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)

    Article  MathSciNet  Google Scholar 

  2. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and probabilistic machines. In: 27th ACM Symp. on Theory of Computing, STOC 1995, pp. 363–372. ACM Press, New York (1995)

    Chapter  Google Scholar 

  3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202(1-2), 1–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282(1), 5–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 187–195. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial proportion. Statistical Science 16, 101–133 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic processes. Journal of the ACM 54(6), Article 29 (2007)

    Article  MathSciNet  Google Scholar 

  9. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hierons, R.M.: Testing from a non-deterministic finite state machine using adaptive state counting. IEEE Transactions on Computers 53(10), 1330–1342 (2004)

    Article  Google Scholar 

  12. Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic finite state machines. In: 3rd Workshop on Mutation Analysis, Mutation 2007, pp. 141–150. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  13. Hierons, R.M., Merayo, M.G.: Mutation testing from probabilistic and stochastic finite state machines. Journal of Systems and Software (in press, 2009)

    Google Scholar 

  14. Hierons, R.M., Merayo, M.G., Núñez, M.: Testing from a stochastic timed system with a fault model. Journal of Logic and Algebraic Programming 78(2), 98–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  16. Hwang, I., Cavalli, A.: Testing from a probabilistic FSM using interval estimation. Technical Report 09004LOR, TELECOM & Management SudParis (2009)

    Google Scholar 

  17. Hwang, I., Kim, T., Hong, S., Lee, J.: Test selection for a nondeterministic FSM. Computer Communications 24(12), 1213–1223 (2001)

    Article  Google Scholar 

  18. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoretical Computer Science 282(1), 101–150 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  21. López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1-3), 228–248 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Luo, G.L., von Bochmann, G., Petrenko, A.: Test selection based on communicating nondeterministic finite-state machines using a generalized Wp-method. IEEE Transactions on Software Engineering 20(2), 149–161 (1994)

    Article  Google Scholar 

  24. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted third party. In: 2nd Conf. on Security in Communication Network (1999)

    Google Scholar 

  25. Merayo, M.G., Núñez, M., Rodríguez, I.: Formal testing from timed finite state machines. Computer Networks 52(2), 432–460 (2008)

    Article  MATH  Google Scholar 

  26. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)

    Google Scholar 

  27. Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1-2), 117–177 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Petrenko, A., Yevtushenko, N., von Bochmann, G.: Testing deterministic implementations from their nondeterministic FSM specifications. In: 9th IFIP Workshop on Testing of Communicating Systems, IWTCS 1996, pp. 125–140. Chapman & Hall, Boca Raton (1996)

    Google Scholar 

  30. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rodríguez, I., Merayo, M.G., Núñez, M.: \({\mathcal HOTL}\): Hypotheses and observations testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)

    Article  MATH  Google Scholar 

  32. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists. John Wiley & Sons, Chichester (1987)

    MATH  Google Scholar 

  33. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Uyar, M.Ü., Batth, S.S., Wang, Y., Fecko, M.A.: Algorithms for modeling a class of single timing faults in communication protocols. IEEE Transactions on Computers 57(2), 274–288 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merayo, M.G., Hwang, I., Núñez, M., Cavalli, A. (2009). A Statistical Approach to Test Stochastic and Probabilistic Systems. In: Breitman, K., Cavalcanti, A. (eds) Formal Methods and Software Engineering. ICFEM 2009. Lecture Notes in Computer Science, vol 5885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10373-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10373-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10372-8

  • Online ISBN: 978-3-642-10373-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics