Skip to main content

Multimodal Laughter Detection in Natural Discourses

  • Chapter
Human Centered Robot Systems

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 6))

Abstract

This work focuses on the detection of laughter in natural multiparty discourses. For the given task features of two different modalities are used from unobtrusive sources, namely a room microphone and a 360 degree camera. A relatively novel approach using Echo State Networks (ESN) is utilized to achieve the task at hand. Among others, a possible application is the online detection of laughter in human robot interaction in order to enable the robot to react appropriately in a timely fashion towards human communication, since laughter is an important communication utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Campbell, N., Kashioka, H., Ohara, R.: No laughing matter. In: Proceedings of Interspeech, ISCA, pp. 465–468 (2005)

    Google Scholar 

  2. Campbell, W.N.: Tools and resources for visualising conversational-speech interaction. In: Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008), ELRA, Marrakech, Morocco (2008)

    Google Scholar 

  3. Drullman, R., Festen, J., Plomp, R.: Effect of reducing slow temporal modulations on speech reception. Journal of the Acousic Society 95, 2670–2680 (1994)

    Article  Google Scholar 

  4. Hermansky, H.: Auditory modeling in automatic recognition of speech. In: Proceedings of Keele Workshop (1996)

    Google Scholar 

  5. Hermansky, H.: The modulation spectrum in automatic recognition of speech. In: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 140–147. IEEE, Los Alamitos (1997)

    Chapter  Google Scholar 

  6. Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the echo state network approach. Tech. Rep. 159, Fraunhofer-Gesellschaft, St. Augustin Germany (2002)

    Google Scholar 

  7. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  8. Kennedy, L., Ellis, D.: Laughter detection in meetings. In: Proceedings of NIST ICASSP, Meeting Recognition Workshop (2004)

    Google Scholar 

  9. Knox, M., Mirghafori, N.: Automatic laughter detection using neural networks. In: Proceedings of Interspeech 2007, ISCA, pp. 2973–2976 (2007)

    Google Scholar 

  10. Laskowski, K.: Modeling vocal interaction for text-independent detection of involvement hotspots in multi-party meetings. In: Proceedings of the 2nd IEEE/ISCA/ACL Workshop on Spoken Language Technology (SLT 2008), pp. 81–84 (2008)

    Google Scholar 

  11. Maganti, H.K., Scherer, S., Palm, G.: A novel feature for emotion recognition in voice based applications. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 710–711. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Pugh, S.D.: Service with a smile: Emotional contagion in the service encounter. Academy of Management Journal 44, 1018–1027 (2001)

    Article  Google Scholar 

  13. Scherer, S., Hofmann, H., Lampmann, M., Pfeil, M., Rhinow, S., Schwenker, F., Palm, G.: Emotion recognition from speech: Stress experiment. In: Proceedings of the Sixth International Language Resources and Evaluation (LREC 2008). European Language Resources Association (ELRA), Marrakech, Morocco (2008)

    Google Scholar 

  14. Scherer, S., Oubbati, M., Schwenker, F., Palm, G.: Real-time emotion recognition from speech using echo state networks. In: Prevost, L., Marinai, S., Schwenker, F. (eds.) ANNPR 2008. LNCS (LNAI), vol. 5064, pp. 205–216. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Strauss, P.M., Hoffmann, H., Scherer, S.: Evaluation and user acceptance of a dialogue system using wizard-of-oz recordings. In: 3rd IET International Conference on Intelligent Environments, IET, pp. 521–524 (2007)

    Google Scholar 

  16. Truong, K.P., Van Leeuwen, D.A.: Automatic detection of laughter. In: Proceedings of Interspeech, ISCA, pp. 485–488 (2005)

    Google Scholar 

  17. Truong, K.P., Van Leeuwen, D.A.: Evaluating laughter segmentation in meetings with acoustic and acoustic-phonetic features. In: Workshop on the Phonetics of Laughter, Saarbrücken, pp. 49–53 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scherer, S., Schwenker, F., Campbell, N., Palm, G. (2009). Multimodal Laughter Detection in Natural Discourses. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds) Human Centered Robot Systems. Cognitive Systems Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10403-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10403-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10402-2

  • Online ISBN: 978-3-642-10403-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics