
Social Motorics – Towards an Embodied Basis of
Social Human-Robot Interaction

Amir Sadeghipour, Ramin Yaghoubzadeh, Andreas Rüter, and Stefan Kopp

Abstract In this paper we present a biologically-inspired model for social behavior
recognition and generation. Based on an unified sensorimotor representation, it in-
tegrates hierarchical motor knowledge structures, probabilistic forward models for
predicting observations, and inverse models for motor learning. With a focus on
hand gestures, results of initial evaluations against real-world data are presented.

1 Introduction

For human-centered robots to be able to engage in social interactions with their
users, they need to master a number of daunting tasks. This includes, e.g., robust and
fast recognition and understanding of interactive user behavior, human-acceptable
expressivity, joint attention, or incremental dialog with mutual adaptivity. In hu-
mans such capabilities are assumed to rest upon an embodied basis of social interac-
tion – direct interactions between perception and generation processes (perception-
behavior expressway [6]) that support mirroring or resonance mechanisms [15] to
process social behavior at different levels, from kinematic features to motor com-
mands to intentions or goals [8]. Research in social robotics has increasingly started
to adopt such principles in its work on architectures and interaction models (e.g.
[3, 5]). Against this background we present our work towards “social motorics”,
modeling a resonant sensorimotor basis for observing and using social behavior in
human-robot interaction. With a focus on hand-arm gestures, we describe a proba-
bilistic model that exploits hierarchical motor structures with forward and inverse
models in order to allow resonance-based processing of social behavior. We start
in Section 2 with a review of related work on gesture learning and recognition. In
Section 3 we introduce our overall computational model and detail the employed
forward and inverse models in Section 4 and 5, respectively. The probabilistic mod-
eling of interactions between perception and generation is described in Section 6
and, afterwards, we present in Section 7 results of how the model performs at sim-
ulating resonances during perception of gestural behavior. Finally, Section 8 gives a
conclusion and summery of future works.
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2 Related Works

The growing interest in developing social artificial agents requires abilities for per-
ception, recognition and generation of gestures as one of the non-verbal interac-
tion modalities. The recognition process is concerned with the analysis of spatio-
temporal features of the hand movements and is mainly treated as pattern classi-
fication with subsequent attribution of meaning. Many studies apply probabilistic
approaches to classify hand gesture trajectories. Hidden Markov models have been
widely applied as an efficient probabilistic approach to work with sequence of data
[1, 4, 7]. However, the focus of those approaches is on pattern recognition separated
from the attribution of meaning, and they rely on hidden variables which do not
directly correspond to the agent’s own action repertoire. For recognizing transitive
actions, in which the goal of an observed action is often visually inferable, hierarchi-
cal models are used to analyze the perceived stimuli in a bottom-up manner towards
more abstract features and, consequently, goals of those actions [2, 11, 17].

Furthermore, imitation mechanisms (overt or covert ones) are widely used for
learning and reproducing behaviors in artificial agents. For instance, the MOSAIC
model applies forward and inverse models to predict and control movements in a
modular manner [9]. Others [10, 17] have worked on hierarchical MOSAIC models
towards more abstract levels of actions. However, none of these models has adopted
imitation mechanisms to attain perception-action links using a shared motor repre-
sentation – a hallway of what we assume here to be the basis of social motorics.

3 Resonant Sensorimotor Basis

In our work we aim at modeling perceptuo-motor processes that enable a robot,
on the one hand, to concurrently perceive, recognize and understand motor acts of
hand-arm gestures and learn them by imitation (cf. [12, 14]). That is, the model is
to process the robot’s perceptions automatically, incrementally, and hierarchically
from hand and arm movement observation toward understanding and semantics of
a gesture. In result, the robot’s motor structures are to start to “resonante” to the
observation of corresponding actions of another structurally congruent agent (either
human or artificial). On the other hand, the model is designed to allow the robot to
generate gestures in social interaction from the same motor representation.

Overall, the model connects four different structures (Fig. 1): preprocessing, mo-
tor knowledge, forward models, and inverse models. We presume that some kind of
perceptual processing has identified a human’s body parts as relevant for hand-arm
gesture. Now, the preprocessing module receives continuous stimuli about the user’s
hand postures (finger configurations) and wrist positions in the user’s effector space.
Since in our framework the received sensory data are already associated with corre-
sponding body parts (left/right arm and left/right hand) of the human demonstrator
(cf. Section 7), and since we assume the robot to be anthropomorphic, body corre-
spondence can be established straight-forward. A body mapping submodule maps
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the perceived data from the human-centered coordinate system into the robot’s body
frame of reference. The sensory memory receives the transformed visual stimuli at
each time step and buffers them in chronological order in a working memory.

The motor knowledge structures encode the robot’s competence to perform cer-
tain gestural behaviors itself – more specifically, to perform the required movements
of the relevant body parts. This knowledge is organized hierarchically. The lowest
level contains motor commands (MC) required for the single movement segments
(cf. [13]). Data for each of the four relevant body parts is stored in directed graphs,
the nodes of which are intermediate states within a gestural movement; the edges
represent the motor commands that lead from one state to another. The next level,
also present for each body part, consists of motor programs (MP) that cluster several
sequential MCs together and represent paths in the motor command graph. Each MP
stands for a meaningful movement, i.e., a gestural performance executed with the
respective body part. Since gestures typically employ both the hand as well as the
more proximal joints (elbow, shoulder), often even in both arms, all contributing
body parts need to be controlled simultaneously. Furthermore, gestures are gener-
ally not restricted to a specific performance but have some variable features which,
when varied, do not change the meaning of the gesture but merely the way of per-
forming it. Thus, a social robot must be able to cluster numerous instances of a
gestural movement into a so-called “schema”, which demarcates the stable, manda-
tory features from the variable features. For example, a waving gesture has a number
of determinant features (hand lifted, palm facing away from the body, reciprocating
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motion in the frontal body plane), while bearing a number of variable features that
mark its context-dependency or manner of execution (e.g., number of repetitions,
speed, handedness, height). Therefore, we define motor schemas (MS) as a gener-
alized representation that groups different, familiar performances in relevant body
parts (MPs) of a gesture into a single cluster. Such a generalization process can fos-
ter the understanding and imitation of behavior in several ways. First, by combining
different body parts into an MS, a gesture can be recognized more robustly combin-
ing information about different body parts. Second, the concept of motor schemas
elevates the problem of interpreting a gesture from the complex motor level to a
more abstract, yet less complex level, namely schema interpretation. Third, a robot
can retain its own personal form of performing a gesture while being able to relate
other performances of the same gesture to the same schema.

The third structure is formed by forward models. Such models are derived from
the robot’s motor knowledge at each level. While observing a behavior, they run
internal simulations in order to predict how the behavior would continue for each
possible explanation considered. By evaluating this prediction against the actual per-
cepts at each time step, this structure is able to determine how well individual motor
commands, programs or schemas correspond to the observed behavior. If there is
no sufficiently corresponding representation, the processing switches to the final
structure, the inverse models. These are responsible for learning, i.e. analyzing the
movements of a behavior and augmenting the robot’s motor knowledge at all three
levels correspondingly. To this end, a segmenter on the lowest level decomposes re-
ceived movements into (nearly) planar segments based on their kinematic features
(i.e. velocity profile and direction changes).

In the following, we will present a probabilistic approach to model these three
core structures (motor knowledge, forward models and inverse models) for intransi-
tive, gestural movements.

4 Forward Models

The classification of observed input into levels of increasing abstraction, as de-
scribed above, is achieved by matching it with simulations performed according
to the receiver’s own motor repertoire. This simulation and matching is performed
by the forward models in a probabilistic way. The aim is to find a set of hypotheses
from the repertoire that can explain the observed input. For each hypothesis consid-
ered, a class of functors termed predictors constructs a probability density function
for the input likelihood for an arbitrary time in the future (the prediction), under the
condition that the motor component associated with that hypothesis were to be the
one producing the observations. The result of the ongoing evaluation of these expec-
tations against the actual evidence is assumed to reflect automatic “resonances” in
the robot’s motor hierarchy. As demanded for an embodied basis of social interac-
tion, this method therefore consequently carries the assumption of a correspondence
between the motor repertoires of the human user and the social robot.
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Based on the predictors, any observation is evaluated against the densities pre-
dicted for that time. This yields a measure of explainability of the data under the as-
sumptions implied by the hypothesis (diagnostic support). The resulting a-posterori
performances of the hypotheses are then compared using Bayes’ theorem, taking
into account the probability of certain motion primitives as provided in the form
of prior distributions, which can be influenced by higher levels. The explicit poste-
rior distributions are also used for a suitable pruning of the search space, allowing
both the retention of plausible hypotheses while at the same time discarding those
hypotheses deemed negligible. Full probabilistic forward models for the levels of
motor commands, motor programs and motor schemas for wrist trajectories in 3D
space have been implemented and tested (cf. Section 7). The forward model at the
motor command level makes use of distribution functions formed by the convolu-
tion of a configurable Gaussian kernel along parts of the possible trajectories as
spanned by consecutive motor commands. The covered 3D space is also a function
of time, which is addressed by another configurable distribution function relating the
individual tolerated speed variance to a path segment along the trajectory. This set
of variable-density “tubular clouds” (Fig. 2(d)) is utilized as hypothesis-dependent
likelihood functor P(ot |c). Formula 1 details the generation of posteriors with a
prior feedback approach (using the previous posterior as prior PT−1(c)).

PT (c|o) :=
1
T

T

∑
t=t1

P(c|ot) =
1
T

T

∑
t=t1

αcPT−1(c)P(ot |c) (1)

The forward models at higher levels work similarly in a Bayesian fashion and
consider the observation and hypotheses from the lower levels. The motor program
hypotheses (Formula 2) contain additionally the likelihood functor P(c|p), which is
modeled as a simple discrete Gaussian probability distribution along the according
motor commands at each time step.

PT (p|C,o) :=
1
T

T

∑
t=t1

αpPT−1(p) ∑
c∈C

P(ot |c)Pt(c|p) (2)

A motor schema clusters different performances of a gesture with certain vari-
able features. The corresponding forward model at this level contains a new like-
lihood functor P(p|s) that equals one, only if the according motor program, p, is
clustered to the given motor schema, s. In addition, the forward model contains
both likelihood models of the lower levels. Hence, the parameters of those like-
lihood functors (variances) can be set by each motor schema in order to take the
variable performance features into consideration, i.e. velocity and position of mo-
tor commands or repetition of a movement segment. Furthermore, motor schemas
determine which body parts contribute to the performance by applying an AND-
or OR-relation (sum, product or a combination of both) to combine the prediction
probabilities adequately. Formula 3 considers the case of performing a gesture using
all four body parts: right/left arm (rw/lw) and right/left hand (rh/lh).
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PT (s|C,P,olw,orw,ol f ,or f ) :=

1
T

T

∑
t=t1

αsPT−1(s) ∏
i∈{rw,lw,rh,lh}

∑
p∈P

P(pi|s) ∑
c∈C

P(oi,t |ci)Pt(ci|pi)
(3)

In future work, biological constraints and proprioceptive information will be ap-
plied during the simulation. This will allow a richer attribution to an observed move-
ment (e.g. as being effortful and hence emphasized). Furthermore, the forward mod-
els will also be used to assess the feasibility of hypothetical motor commands for
the robot before enriching the repertoire or executing them for (true) imitation.

5 Inverse Models

Whenever a novel behavior is observed, i.e. the forward models have failed to yield
a sufficient explainability from the known repertoire, an inverse model takes over. It
is in charge of formulating motor structures that can reconstruct the novel observa-
tion at the respective level of representation, thereby allowing for extension of the
robot’s repertoire. In our approach, the learning of gestures at the MC level uses a
self-organizing feature map (SOM) to map observations over time onto a lower di-
mensional grid of neurons that represent prototypes, derived from gestures perceived
in the past. These prototypes are used for classification and the generation of mo-
tor commands that form the repertoire of the robot (Fig. 2(a-c)). The best-matching
neuron is determined via a “winner-takes-all” approach and its neighbourhood is
adjusted by the difference between the input and the best match. The emergent map
features smooth transitions between adjacent prototypes.

The inverse model for motor commands operates on movement segments. The
input data are present as a sequence of nearly planar 3D segments, which are first
projected into 2D using PCA, transformed into a common coordinate frame, and
sampled in equidistant intervals. This normalization, which is inverted during fi-
nal reconstruction, allows for the comparison of prototypes and input necessary for
classification and training of the SOM. We use a randomly initialized, dynamical
and online-learning SOM, which enables classification while in training. The dy-
namic learning process is controlled in order to prevent overfitting of the map, and
eventually suspended until new input is presented.

From the winner neurons for the single movement segments, correspondingly
parameterised MCs can be directly computed (cf. [13]) and imparted to the motor
command graph. This will also insert a new MP, if there is none which consists of
the sequence of the winner MCs. The motor schema level reaches into the context
of gesture use and needs to cluster instances of gesture performance. This decision
is subject of ongoing work, in which we consider how imitation with informative
feedback from a human interlocutor can scaffold the learning of invariant features of
a gesture schema and fitting of the likelihood parameters of the corresponding for-
ward model at this level when new performances of familiar gestures are observed.
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6 Resonance-based Behavior Processing

The proposed model employs one and the same motor knowledge to guide the recog-
nition of familiar hand-arm gestures, and as repository of motor commands and pro-
grams in the self-generation of behavior. Such a direct link between perception and
action is assumed to underlie the evident cross-activation and influence of the two
processes. The resulting mirroring of actions made by another individual is assumed
to be fundamental to social understanding and embodied communication [15]. Such
resonances in sensorimotor structures can enable many mutualities abundant in so-
cial interaction [6], e.g. non-conscious mimicry when leaking through to execution,
or alignment when leaving traces that affect behavior production.

In our model, perception-induced resonances are the posterior probabilities of
valid hypotheses. It is also simulated how such resonances percolate upwards, from
single motor commands to higher-level structures, as well as how higher levels may
affect and guide the perception process at lower levels over the next time steps.
These processes are accounted for by computing the posteriors using Bayes’ law
and inserting prior probabilities for each motor component which depend on three
criteria: (1) the number of candidate hypotheses (assigning the default priors); (2)
the a-posteriori from upper levels (cf. Section 4); (3) the posterior probability in
the previous time step, since we apply the prior-feedback method to model time
dependency between sequential evidences. The combination of these priors affects
the activation of the corresponding motor component during perception.

Except for the first one, these criteria also carry on information about the last per-
ceived gesture. Therefore, these priors are not directly reset to their default values
after perception, but decline following a sigmoidal descent towards the default a-
priori. When the robot, as advocated here, uses the same motor knowledge and con-
sequently the same prior probabilities while selecting proper motor components for
producing its own behavior, the robot tends to favor those schemas, programs, and
motor commands that have been perceived last. The other way around, the model
also allows to simulate “perceptual resonance”: choosing a motor component for
generation increases its prior probability temporarily, biasing the robot’s perception
toward the self-generated behavior – another suggested mechanism of coordination
in social interaction [16].

7 Results

The proposed model for resonance-based gesture perception has been implemented
and tested with real-world gesture data in a setup with a 3D time-of-flight camera
(SwissRangerTMSR40001), which can be easily mounted to any mobile robot, and
the marker-free tracking software iisu2.

1 http://www.mesa-imaging.ch
2 http://www.softkinetic.net



8 Amir Sadeghipour, Ramin Yaghoubzadeh, Andreas Rüter, and Stefan Kopp

Inverse model The performance of the applied SOM at the MC level depends on
the training data and parameters. The result of a trained 4×4 SOM is shown in Fig.
2(a-c), after segmenting the observed wrist trajectory of a figure “3” drawn in the
air.

(a) (b) (c) (d)

Fig. 2 (a) The performed figure “3” trajectory and a randomly initialized SOM; (b) the SOM and
mapped trajectory after 10 training iterations and (c) after 150 iterations; (d) visualization of a
time-dependent likelihood function P(ot |h) used by the forward models.

Forward models In the following example, the motor knowledge (Fig. 3 top-left)
was built based on observation of several performances of four different gestures:
waving, drawing a circle, and two variants of pointing upwards. Fig. 3 shows how
the confidences of alternative hypotheses at all three motor levels are evolving dur-
ing the perception of another waving gesture.
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At each time point in the observation, one hypothesis corresponds to the most
expected movement component. Depending on the number of hypotheses, the max-
imum expectation value changes over time and the winner threshold is adopted re-
spectively. As shown in Fig. 3 (bottom), the hypotheses first indicate that the obser-
vation is similar to a familiar pointing gesture (c7). Therefore the robot thinks that
the user is going to point upwards (p4). However, after one second the user starts to
turn his hand to the right. Thus, the expectation values of the motor commands c1
and c5 increase. Consequently, the gestures (p1 and p3) attain higher expectancies
but the robot still cannot be sure whether the user is going to draw a circle or wave.
After about two seconds the movement turns into swinging, which is significantly
similar to the waving gestures (p1) known to the robot. In result, the robot asso-
ciates the whole movement with the waving schema and can now, e.g., execute a
simultaneous imitation using his motor commands in the winning motor program.

8 Conclusion and Outlook

We presented our work towards the establishment of a sensorimotor foundation for
social human-robot interaction, guided by neurobiological evidence regarding mo-
tor resonance. The model combines hierarchical motor representations with proba-
bilistic forward models and unsupervisedly learned inverse models. Our evaluations
with camera data of human gesturing have hitherto produced promising results with
respect to a robust recognition and meaningful classification of presented gestures,
making use of a growing resonant motor repertoire shared between all sensorimotor
processes. The hierarchical nature of the model considers not only the mere spatio-
temporal features but also more abstract levels, from the form and trajectory towards
the meaning of a gesture. Using a unified motor representation for both perception
and action allows direct interactions between these bottom-up and top-down pro-
cesses and enables the robot to interact in more natural and socially adept ways.

Future work will further extend this line of research and tackle the symmet-
rical use of the resonant representations for both perceiving and generating ges-
tures, which paves the way toward social human-robot interaction with features like
mimicry and alignment. Moreover, since fingers contribute significantly in many
co-verbal hand-arm gestures, the introduced finger modules in the model will be re-
alized. Consequently, the setup needs to be extended in order to sense and perceive
finger configurations as well. In this context, further training with real gesture data
will be necessary to determine the learning capacity of the model.
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