Abstract
Extremal optimisation (EO) is a simple and effective technique that is influenced by nature and which is especially suitable to solve assignment type problems. EO uses the principle of eliminating the weakest or the least adapted component and replacing it by a random one. This paper presents a new hybrid EO approach that consists of an EO framework with an improved local search for the bin packing problem (BPP). The stochastic nature of the EO framework allows the solution to move between feasible and infeasible spaces. Hence the solution has the possibility of escaping from a stagnant position to explore new feasible regions. The exploration of a feasible space is complemented with an improved local search mechanism developed on the basis of the proposed Falkenauer’s technique. The new local search procedure increases the probability of finding better solutions. The results show that the new algorithm is able to obtain optimal and efficient results for large problems when the approach is compared with the best known methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boettcher, S., Percus, A.G.: Evolutionary strategies extremal optimization: Methods derived from co-evolution. In: GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 825–832 (1999)
Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2(1), 5–30 (1996)
Alvim, A., Glover, F., Ribeiro, C., Aloise, D.: Local search for the bin packing problem. In: Extended Abstracts of the III Metaheuristics International Conference (MIC 1999), Angra dos Reis, Brazil, pp. 7–12 (1999)
Hendtlass, T., Randall, M.: Extremal optimisation and bin packing. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 220–228. Springer, Heidelberg (2008)
Karmarkar, N., Karp, R.M.: The differencing method of set partitioning. Technical Report UCB/CSD-83-113, EECS Department, University of California, Berkeley, CA, USA (1983)
Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin packing and cutting stock problems. Journal of the Operational Research Society 55(7), 705–716 (2004)
Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics 28(1), 59–70 (1990)
Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)
Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71(24), 4083–4086 (1993)
Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters 59(4), 381–384 (1987)
Bak, P.: How nature works. Springer-Verlag New York Inc., Heidelberg (1996)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)
Boettcher, S.: Extremal optimization: Heuristics via co-evolutionary avalanches. Computing in Science and Engineering 2, 75–82 (2000)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman & Co., New York (1979)
Huang, W., Liu, J.: Extremal optimization with local search for the circular packing problem. In: Proceedings of the Third International Conference on Natural Computation, ICNC 2007, vol. 5, pp. 19–23. IEEE Computer Society, Los Alamitos (2007)
Gómez-Meneses, P., Randall, M.: Extremal optimisation with a penalty approach for the multidimensional knapsack problem. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 229–238. Springer, Heidelberg (2008)
Randall, M.: Enhancements to extremal optimisation for generalised assignment. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 369–380. Springer, Heidelberg (2007)
Martello, S., Toth, P.: Knapsack problems: Algorithms and computer implementations. John Wiley & Sons, Inc., New York (1990)
Boettcher, S., Percus, A.G.: Extremal optimization for graph partitioning. Physical Review E 64, 026114 (2001)
Randall, M., Hendtlass, T., Lewis, A.: Extremal optimisation for assignment type problems. In: Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications. Studies in Computational Intelligence, vol. 210, pp. 139–164. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gómez-Meneses, P., Randall, M. (2009). A Hybrid Extremal Optimisation Approach for the Bin Packing Problem. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-10427-5_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10426-8
Online ISBN: 978-3-642-10427-5
eBook Packages: Computer ScienceComputer Science (R0)