Skip to main content

A Hybrid Extremal Optimisation Approach for the Bin Packing Problem

  • Conference paper
Artificial Life: Borrowing from Biology (ACAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5865))

Included in the following conference series:

Abstract

Extremal optimisation (EO) is a simple and effective technique that is influenced by nature and which is especially suitable to solve assignment type problems. EO uses the principle of eliminating the weakest or the least adapted component and replacing it by a random one. This paper presents a new hybrid EO approach that consists of an EO framework with an improved local search for the bin packing problem (BPP). The stochastic nature of the EO framework allows the solution to move between feasible and infeasible spaces. Hence the solution has the possibility of escaping from a stagnant position to explore new feasible regions. The exploration of a feasible space is complemented with an improved local search mechanism developed on the basis of the proposed Falkenauer’s technique. The new local search procedure increases the probability of finding better solutions. The results show that the new algorithm is able to obtain optimal and efficient results for large problems when the approach is compared with the best known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boettcher, S., Percus, A.G.: Evolutionary strategies extremal optimization: Methods derived from co-evolution. In: GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 825–832 (1999)

    Google Scholar 

  2. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2(1), 5–30 (1996)

    Article  Google Scholar 

  3. Alvim, A., Glover, F., Ribeiro, C., Aloise, D.: Local search for the bin packing problem. In: Extended Abstracts of the III Metaheuristics International Conference (MIC 1999), Angra dos Reis, Brazil, pp. 7–12 (1999)

    Google Scholar 

  4. Hendtlass, T., Randall, M.: Extremal optimisation and bin packing. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 220–228. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Karmarkar, N., Karp, R.M.: The differencing method of set partitioning. Technical Report UCB/CSD-83-113, EECS Department, University of California, Berkeley, CA, USA (1983)

    Google Scholar 

  6. Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin packing and cutting stock problems. Journal of the Operational Research Society 55(7), 705–716 (2004)

    Article  MATH  Google Scholar 

  7. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics 28(1), 59–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  9. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71(24), 4083–4086 (1993)

    Article  Google Scholar 

  10. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters 59(4), 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  11. Bak, P.: How nature works. Springer-Verlag New York Inc., Heidelberg (1996)

    MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)

    MATH  Google Scholar 

  13. Boettcher, S.: Extremal optimization: Heuristics via co-evolutionary avalanches. Computing in Science and Engineering 2, 75–82 (2000)

    Article  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  15. Huang, W., Liu, J.: Extremal optimization with local search for the circular packing problem. In: Proceedings of the Third International Conference on Natural Computation, ICNC 2007, vol. 5, pp. 19–23. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  16. Gómez-Meneses, P., Randall, M.: Extremal optimisation with a penalty approach for the multidimensional knapsack problem. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 229–238. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Randall, M.: Enhancements to extremal optimisation for generalised assignment. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 369–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Martello, S., Toth, P.: Knapsack problems: Algorithms and computer implementations. John Wiley & Sons, Inc., New York (1990)

    MATH  Google Scholar 

  19. Boettcher, S., Percus, A.G.: Extremal optimization for graph partitioning. Physical Review E 64, 026114 (2001)

    Article  Google Scholar 

  20. Randall, M., Hendtlass, T., Lewis, A.: Extremal optimisation for assignment type problems. In: Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications. Studies in Computational Intelligence, vol. 210, pp. 139–164. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez-Meneses, P., Randall, M. (2009). A Hybrid Extremal Optimisation Approach for the Bin Packing Problem. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10427-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10426-8

  • Online ISBN: 978-3-642-10427-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics