Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 66))

  • 2655 Accesses

Abstract

Mitigation through ignition and venting prevents potential detonation situations, but the resulting deflagration burn can still pose a threat to containment structures. The purpose of this research is to understand the general behaviour of vented deflagration using simulation. This paper discusses simulation modelling for the deflagration process in large volumes. The simulation is used to estimate pressure development and visualize flame growth during a deflagration. The simulation model is simple and efficient for the complicated deflagration process. It can be used in real time with design changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baraldi, D., Heitsch, M., Wilkening, H.: CFD Simulation of Hydrogen Combustion in Simplified EPR containment with CFX and REACFLOW. Nuclear Engineering and Design, 1668–1678 (2007)

    Google Scholar 

  • Bradley, D., Mitcheson, A.: Venting of Gaseous Explosions in Spherical Vessels EM Dash, Theory and Experiment. Combustion and Flame, pp. 221–236 (1978)

    Google Scholar 

  • Chan, C.K.: Assessing the Possibility of Deflagration to Detonation Transition in a Non-uniform Mixture. In: Proceedings of the 2003 International Autumn Seminar on Propellants, Explosives and Pyrotechnics - Theory and Practice of Energetic Materials, pp. 393–403 (2003)

    Google Scholar 

  • Cummings, J.C., Lee, J.H.S., Marx, K.D., Camp, A.L.: Analysis of Combustion in Closed or Vented Rooms and Vessels. Plant Operations Progress 3, 239–247 (1984)

    Google Scholar 

  • Fairweather, M., Vasey, M.W.: Mathematical Model for the Prediction of Overpressure Generated in Totally Confined and Vented Explosions. In: International Symposium on Combustion, pp. 645–653 (1982)

    Google Scholar 

  • Kirby, D.C., Schwab, R.F.: NFPA 68 Guide for Venting of Deflagrations (2002)

    Google Scholar 

  • Koroll, G.W., Kumar, R.K., Bowles, E.M.: Burning Velocities of Hydrogen-Air Mixtures. Combustion and Flame 94, 330–340 (1993)

    Article  Google Scholar 

  • Kumar, R.K., Dewit, W.A., Greig, D.R.: Vented Explosion of Hydrogen-Air Mixtures in a Large Volume. In: Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference, pp. 297–304 (1987)

    Google Scholar 

  • Lee, J., Jin-Yong, L., Park, G., Lee, B., Yoo, H., Kim, H., Oh, S.: Gothic-3D Applicability to Hydrogen Combustion Analysis. Nuclear Engineering and Technology 37, 197–206 (2004)

    Google Scholar 

  • Loesel-Sitar, J., Koroll, G.W., Dewitt, W.A., Bowles, E.M.: The Large Scale Vented Combustion Test Facility at AECL-WL: Description and Preliminary Results. AECL-11762, AECL Whiteshell Laboratories, Pinawa (1997)

    Google Scholar 

  • Manninen, M., Silde, A., Lindholm, I., Huhtanen, R., Sjovall, H.: Simulation of hydrogen Deflagration and Detonation in BWR Reactor Building. Nuclear Engineering and Design 1, 27–50 (2002)

    Article  Google Scholar 

  • Molkov, V., Dobashi, R., Suzuki, M., Hirano, T.: Venting of Deflagrations: Hydrocarbon-air and Hydrogen-Air Systems. Journal of Loss Prevention in the Process Industry 4, 397–409 (2000)

    Article  Google Scholar 

  • Molkov, V., Dobashi, R., Suzuki, M., Hirano, T.: Modeling of Vented Hydrogen-Air Deflagrations and Correlations for Vent Sizing. Journal of Loss Prevention in the Process Industries 12, 147–156 (1999)

    Article  Google Scholar 

  • Mulpuru, S.R., Wilkin, G.B.: Model for Vented Deflagration of Hydrogen in a Volume. Report of Atomic Energy of Canada Limited (1982)

    Google Scholar 

  • Sato, Y., Iwabuchi, H., Groethe, M., Merilo, E., Chiba, S.: Experiments on Hydrogen Deflagration. Journal of Power Sources 3, 144–148 (2006)

    Article  Google Scholar 

  • Swift, I.: Gaseous Combustion Venting - A Simplified Approach. Institution of Chemical Engineers Symposium Series, pp. 21–37 (1983)

    Google Scholar 

  • Swift, I.: Vented Deflagrations – Theory and Practice. Plant Operations Progress 2, 89–93 (1984)

    Article  Google Scholar 

  • Whitehouse, D.R., Loesel-Sitar, J., Chan, C.K.: A Novel Approach to Vented Combustion. Report of Atomic Energy of Canada Limited. Containment Analysis Branch (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazaro, A., Peng, Q. (2010). Simulation Modelling of the Deflagration Behaviour. In: Huang, G.Q., Mak, K.L., Maropoulos, P.G. (eds) Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology. Advances in Intelligent and Soft Computing, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10430-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10430-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10429-9

  • Online ISBN: 978-3-642-10430-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics