Abstract
We consider the task of interpreting and understanding a taxonomy of classification terms applied to documents in a collection. In particular, we show how unsupervised topic models are useful for interpreting and understanding MeSH, the Medical Subject Headings applied to articles in MEDLINE. We introduce the resampled author model, which captures some of the advantages of both the topic model and the author-topic model. We demonstrate how topic models complement and add to the information conveyed in a traditional listing and description of a subject heading hierarchy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lu, Z., Kim, W., Wilbur, W.J.: Evaluation of query expansion using mesh in pubmed. Inf. Retr. 12(1), 69–80 (2009)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
Griffiths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences 101, 5228–5235 (2004)
Buntine, W.L., Jakulin, A.: Applying discrete pca in data analysis. In: UAI, pp. 59–66 (2004)
Rosen-Zvi, M., Griffiths, T.L., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: UAI, pp. 487–494 (2004)
Herskovic, J.R., Tanaka, L.Y., Hersh, W., Bernstam, E.V.: A day in the life of pubmed: analysis of a typical day’s query log. J. Am. Med. Inform. Assoc. 14(2), 212–220 (2007)
Lin, J., Wilbur, W.J.: Modeling actions of pubmed users with n-gram language models. Inf. Retr. 12(4), 487–503 (2009)
Mörchen, F., Dejori, M., Fradkin, D., Etienne, J., Wachmann, B., Bundschus, M.: Anticipating annotations and emerging trends in biomedical literature. In: KDD, pp. 954–962 (2008)
Snow, R., Jurafsky, D., Ng, A.Y.: Semantic taxonomy induction from heterogenous evidence. In: ACL, pp. 801–808 (2006)
Chemudugunta, C., Smyth, P., Steyvers, M.: Combining concept hierarchies and statistical topic models. In: CIKM, pp. 1469–1470 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Newman, D., Karimi, S., Cavedon, L. (2009). Using Topic Models to Interpret MEDLINE’s Medical Subject Headings. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-10439-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10438-1
Online ISBN: 978-3-642-10439-8
eBook Packages: Computer ScienceComputer Science (R0)