Skip to main content

A Novel Path-Based Clustering Algorithm Using Multi-dimensional Scaling

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

  • 1757 Accesses

Abstract

Data clustering is a difficult and challenging task, especially when the hidden clusters are of different shapes and non-linearly separable in the input space. This paper addresses this problem by proposing a new method that combines a path-based dissimilarity measure and multi-dimensional scaling to effectively identify these complex separable structures. We show that our algorithm is able to identify clearly separable clusters of any shape or structure. Thus showing that our algorithm produces model clusters; that follow the definition of a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Law, M.: Data Clustering: A User’s Dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Jain, A.: Data Clustering: 50 Years Beyond K-means. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 3–4. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: 10th Int. Conf. on Knowledge Discovery and Data Mining, pp. 551–556. ACM, New York (2004)

    Google Scholar 

  4. Scholkopf, B., Smola, A., Muller, K.: Nonlinear component analysis as a kernel eigenvalue problem. J. Neu. Com. 10, 1299–1319 (1998)

    Article  Google Scholar 

  5. Von Luxburg, U.: A tutorial on spectral clustering. J. Sta. and Com. 17, 395–416 (2007)

    Article  Google Scholar 

  6. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: International Conference on AI and Statistics (2001)

    Google Scholar 

  7. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Adv. in Neu. Inf. Pro. Sys. 14, vol. 2, pp. 849–856 (2001)

    Google Scholar 

  8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  9. Fischer, B., Zoller, T., Buhmann, J.: Path based pairwise data clustering with application to texture segmentation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 235–250. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 514–519 (2003)

    Article  Google Scholar 

  11. Fischer, B., Buhmann, J.M.: Bagging for path-based clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1411–1415 (2003)

    Article  Google Scholar 

  12. Chang, H., Yeung, D.: Robust path-based spectral clustering. J. Pat. Rec. 41, 191–203 (2008)

    Article  MATH  Google Scholar 

  13. Borg, I., Groenen, P.: Modern multidimensional scaling: Theory and applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  14. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1989)

    Google Scholar 

  15. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. J. Adv. in Neu. Inf. Pro. Sys. 17, 1601–1608 (2004)

    Google Scholar 

  16. UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html

  17. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. on Knowledge and Data Engineering 17, 1624–1637 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, U.T.V., Park, L.A.F., Wang, L., Ramamohanarao, K. (2009). A Novel Path-Based Clustering Algorithm Using Multi-dimensional Scaling. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics