Skip to main content

Edge-Based Algorithm for Shadows and Ghosts Removing

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

  • 1412 Accesses

Abstract

Visual surveillance is often based on background subtraction; it usually detects moving regions in a rough way, with the presence of shadows, ghosts and reflections. In order to improve quality of segmented objects by removing these artifacts in this work we propose an approach based on edge matching. The basic idea is that edges extracted in shadow (or ghost) regions in current image exactly match with edges extracted in the same regions in the background image. On the contrary, edges extracted on foreground objects have not correspondent edges in the background image. A preliminary segmentation procedure based on the uniformity of photometric gain between adjacent points has been carried out to allow a better shadow removing. The algorithm has been tested in many different real contexts, both in indoor and outdoor context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London, ISBN 0-12-686140-4

    Google Scholar 

  2. Smith, S.M.: A new class of corner finder. In: Proc. 3rd BMVC, pp. 139–148 (1992)

    Google Scholar 

  3. Rosito, C.J.: Efficient background subtraction and shadow removal for monochromatic video sequences. IEEE Trans. on Multim. 3, 571–577 (2009)

    Google Scholar 

  4. Joshi, A.J., Papanikolopoulos, N.P.: Learning to detect moving shadows in dynamic environments. IEEE transactions on PAMI 30(11), 2055–2063 (2008)

    Google Scholar 

  5. Xu, D., Liu, J., Li, X., Liu, Z., Tang, X.: Insignificant shadow detection for video segmentation. IEEE Trans. Circ. Syst. Video Techn. 15(8), 1058–1064 (2005)

    Article  Google Scholar 

  6. Leone, A., Distante, C.: Shadow detection for moving objects based on texture analysis. Pattern Recognition 40(11), 1222–1233 (2007)

    Article  MATH  Google Scholar 

  7. Rosin, P., Ellis, T.: Image difference threshold strategies and shadow detection. In: British Machine Vision Conf. (1995)

    Google Scholar 

  8. Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: Algorithms and evaluation. IEEE Trans. PAMI 25(7), 918–923 (2003)

    Google Scholar 

  9. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)

    Google Scholar 

  10. Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Underst. 95, 238–259 (2004)

    Article  Google Scholar 

  11. Tian, Y., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time video surveillance. In: Proc. IEEE CVPR, vol. 1, pp. 1182–1187 (2005)

    Google Scholar 

  12. Martel-Brisson, N., Zaccarin, A.: Learning and removing cast shadows through a multidistribution approach. IEEE Trans. PAMI 29(7), 1133–1146 (2007)

    Google Scholar 

  13. Wang, Y., Tan, T., Loe, K., Wu, J.: A probabilistic approach for foreground and shadow segmentation in monocular image sequences. Patt. Rec. 38, 1937–1946 (2005)

    Article  Google Scholar 

  14. Zhang, W., Fang, X.Z., Yang, X.: Moving cast shadows detection using ratio edge. IEEE Trans. Multimedia 9(6), 1202–1214 (2007)

    Article  Google Scholar 

  15. McKenna, S., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking groups of people. Computer Vision and Image Understanding 80(1), 42–56 (2000)

    Article  MATH  Google Scholar 

  16. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. of the IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spagnolo, P., Mazzeo, P.L., D’Orazio, T., Nitti, M. (2009). Edge-Based Algorithm for Shadows and Ghosts Removing. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_108

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_108

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics