Abstract
Visual surveillance is often based on background subtraction; it usually detects moving regions in a rough way, with the presence of shadows, ghosts and reflections. In order to improve quality of segmented objects by removing these artifacts in this work we propose an approach based on edge matching. The basic idea is that edges extracted in shadow (or ghost) regions in current image exactly match with edges extracted in the same regions in the background image. On the contrary, edges extracted on foreground objects have not correspondent edges in the background image. A preliminary segmentation procedure based on the uniformity of photometric gain between adjacent points has been carried out to allow a better shadow removing. The algorithm has been tested in many different real contexts, both in indoor and outdoor context.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London, ISBN 0-12-686140-4
Smith, S.M.: A new class of corner finder. In: Proc. 3rd BMVC, pp. 139–148 (1992)
Rosito, C.J.: Efficient background subtraction and shadow removal for monochromatic video sequences. IEEE Trans. on Multim. 3, 571–577 (2009)
Joshi, A.J., Papanikolopoulos, N.P.: Learning to detect moving shadows in dynamic environments. IEEE transactions on PAMI 30(11), 2055–2063 (2008)
Xu, D., Liu, J., Li, X., Liu, Z., Tang, X.: Insignificant shadow detection for video segmentation. IEEE Trans. Circ. Syst. Video Techn. 15(8), 1058–1064 (2005)
Leone, A., Distante, C.: Shadow detection for moving objects based on texture analysis. Pattern Recognition 40(11), 1222–1233 (2007)
Rosin, P., Ellis, T.: Image difference threshold strategies and shadow detection. In: British Machine Vision Conf. (1995)
Prati, A., Mikic, I., Trivedi, M.M., Cucchiara, R.: Detecting moving shadows: Algorithms and evaluation. IEEE Trans. PAMI 25(7), 918–923 (2003)
Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. PAMI 25(10), 1337–1342 (2003)
Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Underst. 95, 238–259 (2004)
Tian, Y., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time video surveillance. In: Proc. IEEE CVPR, vol. 1, pp. 1182–1187 (2005)
Martel-Brisson, N., Zaccarin, A.: Learning and removing cast shadows through a multidistribution approach. IEEE Trans. PAMI 29(7), 1133–1146 (2007)
Wang, Y., Tan, T., Loe, K., Wu, J.: A probabilistic approach for foreground and shadow segmentation in monocular image sequences. Patt. Rec. 38, 1937–1946 (2005)
Zhang, W., Fang, X.Z., Yang, X.: Moving cast shadows detection using ratio edge. IEEE Trans. Multimedia 9(6), 1202–1214 (2007)
McKenna, S., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking groups of people. Computer Vision and Image Understanding 80(1), 42–56 (2000)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. of the IEEE 90(7), 1151–1163 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spagnolo, P., Mazzeo, P.L., D’Orazio, T., Nitti, M. (2009). Edge-Based Algorithm for Shadows and Ghosts Removing. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_108
Download citation
DOI: https://doi.org/10.1007/978-3-642-10467-1_108
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10466-4
Online ISBN: 978-3-642-10467-1
eBook Packages: Computer ScienceComputer Science (R0)