Skip to main content

Transfer Discriminative Logmaps

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

  • 1416 Accesses

Abstract

In recent years, transfer learning has attracted much attention in multimedia. In this paper, we propose an efficient transfer dimensionality reduction algorithm called transfer discriminative Logmaps (TDL). TDL finds a common feature so that 1) the quadratic distance between the distribution of the training set and that of the testing set is minimized and 2) specific knowledge of the training samples can be conveniently delivered to or shared with the testing samples. Drawing on this common feature in the representation space, our objective is to develop a linear subspace in which discriminative and geometric information can be exploited. TDL adopts the margin maximization to identify discriminative information between different classes, while Logmaps is used to preserve the local-global geodesic distance as well as the direction information. Experiments carried out on both synthetic and real-word image datasets show the effectiveness of TDL for cross-domain face recognition and web image annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., et al.: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Advances in Neural Information Processing Systems 14, 585–591 (2001)

    Google Scholar 

  2. Belhumeur, P., et al.: Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 711–720 (1997)

    Google Scholar 

  3. Brun, A., et al.: Fast manifold learning based on riemannian normal coordinates. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 920–929. Springer, Heidelberg (2005)

    Google Scholar 

  4. Cai, D., et al.: Semi-supervised Discriminant Analysis. In: Proc. IEEE ICCV, pp. 1–8 (2007)

    Google Scholar 

  5. Caruana, R., et al.: Multitask Learning. Machine Learning, 41–75 (1997)

    Google Scholar 

  6. Chua, T.S., et al.: NUS-WIDE: A Real-World Web Image Database from National University of Singapore. In: Proc. CIVR (2009)

    Google Scholar 

  7. Dai, W., et al.: Boosting for transfer learning. In: Proc. ICML, pp. 193–200 (2007)

    Google Scholar 

  8. Dai, W., et al.: Self-taught clustering. In: Proc. ICML, pp. 200–207 (2008)

    Google Scholar 

  9. Do, C., et al.: Transfer learning for text classification. Advances in Neural Information Processing Systems 18 (2005)

    Google Scholar 

  10. Fisher, R.A., et al.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  11. He, X., et al.: Locality Preserving Projections. Advances in Neural Information Processing Systems 16 (2004)

    Google Scholar 

  12. Hotelling, H., et al.: Analysis of A Complex of Statistical Variables into Principal Components. Journal of Educational Psychology 24, 417–441 (1933)

    Article  Google Scholar 

  13. Liu, W., et al.: Transductive Component Analysis. In: Proc. ICDM, pp. 433–442 (2008)

    Google Scholar 

  14. Mark, D., et al.: Feature Design for Transfer Learning. In: Proc. NESCAI (2006)

    Google Scholar 

  15. Pan, S.J., et al.: Transfer Learning via Dimensionality Reduction. In: Proc. AAAI, pp. 677–682 (2008)

    Google Scholar 

  16. Roweis, S.T., et al.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  17. Sim, T., et al.: The cmu pose, illumination, and expression (pie) database of human faces. Technical report, CMU-RI-TR-01-02, Carnegie Mellon University (2001)

    Google Scholar 

  18. Tao, D., et al.: Geometric Mean for Subspace Selection. IEEE Trans. Pattern Analysis and Machine Intelligence 31(2), 260–274 (2009)

    Article  Google Scholar 

  19. Tao, D., et al.: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  20. Tenenbaum, J.B., et al.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  21. Zhang, T., et al.: Patch Alignment for Dimensionality Reduction. IEEE Trans. Knowledge and Data Engineering 21(9), 1299–1313 (2009)

    Article  Google Scholar 

  22. Zhang, T., et al.: Discriminative Locality Alignment. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 725–738. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Zhang, T., et al.: A unifying framework for spectral analysis based dimensionality reduction. In: Proc. IJCNN, pp. 1670–1677 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Si, S., Tao, D., Chan, KP. (2009). Transfer Discriminative Logmaps. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics