Skip to main content

Saliency Regions for 3D Mesh Abstraction

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

Abstract

This paper proposes a 3D mesh abstraction framework that is capable of segmenting a 3D mesh into specific parts called “saliency regions” based on a saliency computation process, by which the intrinsic pattern of the 3D mesh is promisingly able to be identified. It is then potential to extract effective feature representations from saliency regions for the purpose of 3D mesh retrieval. The process of searching saliency regions is a combination of vertex saliency computation and face saliency computation. Afterwards, a simple selection strategy is adopted to determine the final partition of saliency regions. Experimental results are also provided to show the effectiveness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, Y.B., Lin, H., Zhang, Y.: Content-Based 3-D Model Retrieval: A Survey. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 37(6), 1081–1098 (2007)

    Article  Google Scholar 

  2. Bustos, B., Keim, D., Saupe, D., Schreck, T.: Content-Based 3D Object Retrieval. IEEE Computer Graphics and Applications 27(4), 22–27 (2007)

    Article  Google Scholar 

  3. Osada, R., Funkhouser, T., Chazelle, B., Dibkin, D.: Shape distributions. ACM Transactions on Graph 21(4), 807–832 (2002)

    Article  Google Scholar 

  4. Horn, B.K.P.: Extended Gaussian Image. Proceedings of the IEEE 72(12), 1671–1686 (1984)

    Article  Google Scholar 

  5. Ip, H., Wong, W.: 3D head models retrieval based on hierarchical facial region similarity. In: Proceedings of the 15th International Conference on Vision Interface, pp. 314–319 (2002)

    Google Scholar 

  6. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Transactions on Graph 22(1), 83–105 (2003)

    Article  Google Scholar 

  7. Vranic, D.: 3D model retrieval. Ph.D. thesis, University of Leipzig, Germany (2004)

    Google Scholar 

  8. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Computer Graphics Forum 22(3), 223–232 (2004)

    Article  Google Scholar 

  9. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pp. 203–212. ACM Press, New York (2001)

    Chapter  Google Scholar 

  10. Johnson, A.: Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  11. Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranić, D.: Feature-Based Similarity Search in 3D Object Databases. ACM Computing Surveys 37(4), 345–387 (2005)

    Article  Google Scholar 

  12. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh Saliency. In: Proceedings of ACM SIGGRAPH, pp. 659–666 (2005)

    Google Scholar 

  13. Liu, Y.S., Liu, M., Kihara, D., Ramani, K.: Salient Critical Points for Meshes. In: Proceedings of the ACM symposium on Solid and physical modeling, pp. 277–282 (2007)

    Google Scholar 

  14. Shilane, P., Funkhouser, T.: Distinctive Regions of 3D Surfaces. ACM Transactions on Graphics 26(2) (2007)

    Google Scholar 

  15. Bailer, W., Thallinger, G.: A Framework for Multimedia Content Abstraction and its Application to Rushes Exploration. In: Proceedings of the 6th ACM international Conference on Image and Video Retrieval, pp. 146–153 (2007)

    Google Scholar 

  16. Mani, I., Klein, G., House, D., Hirschman, L.: SUMMAC: a text summarization evaluation. Natural Language Engineering 8(1), 43–68 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, YB., Lu, T., Lin, JJ. (2009). Saliency Regions for 3D Mesh Abstraction. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics