Skip to main content

Efficient NCC-Based Image Matching Based on Novel Hierarchical Bounds

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

Abstract

In this paper, we propose a fast image matching algorithm based on the normalized cross correlation (NCC) by applying the winner-update strategy in conjunction with the novel hierarchical bounds of cross correlation. We derive a novel upper bound for the cross-correlation of image matching based on the lower bound of sum of square difference (SSD), which is derived in the Walsh-Hadamard domain because of its nice energy packing property. Applying this upper bound with the winner update search strategy can skip unnecessary calculation, thus significantly reducing the computational burden of NCC-based pattern matching. Experimental results show the proposed algorithm is very efficient for NCC-based image matching under different lighting conditions and noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block matching motion estimation. IEEE Trans. Image Processing 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  2. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Systems Video Technology 4(4), 438–442 (1994)

    Article  Google Scholar 

  3. Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6, 313–317 (1996)

    Article  Google Scholar 

  4. Li, W., Salari, E.: Successive elimination algorithm for motion estimation. IEEE Trans. Image Processing 4(1), 105–107 (1995)

    Article  Google Scholar 

  5. Gao, X.Q., Duanmu, C.J., Zou, C.R.: A multilevel successive elimination algorithm for block matching motion estimation. IEEE Trans. Image Processing 9(3), 501–504 (2000)

    Article  Google Scholar 

  6. Lee, C.-H., Chen, L.-H.: A fast motion estimation algorithm based on the block sum pyramid. IEEE Trans. on Image Processing 6(11), 1587–1591 (1997)

    Article  Google Scholar 

  7. Gharavi-Alkhansari, M.: A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. Image Processing 10(4), 526–533 (2001)

    Article  MATH  Google Scholar 

  8. Hel-Or, Y., Hel-Or, H.: Real-time pattern matching using projection kernels. IEEE Trans. Pattern Analysis Machine Intelligence 27(9), 1430–1445 (2005)

    Article  Google Scholar 

  9. Chen, Y.S., Huang, Y.P., Fuh, C.S.: A fast block matching algorithm based on the winner-update strategy. IEEE Trans. Image Processing 10(8), 1212–1222 (2001)

    Article  MATH  Google Scholar 

  10. Di Stefano, L., Mattoccia, S.: Fast template matching using bounded partial correlation. Machine Vision and Applications 13(4), 213–221 (2003)

    Article  Google Scholar 

  11. Di Stefano, L., Mattoccia, S.: A Sufficient Condition based on the Cauchy-Schwarz Inequality for Efficient Template Matching. In: IEEE International Conf. Image Processing, Barcelona, Spain, September 14-17 (2003)

    Google Scholar 

  12. Lewis, J.P.: Fast template matching. Vision Interface, 120–123 (1995)

    Google Scholar 

  13. Mc Donnel, M.: Box-filtering techniques. Computer Graphics and Image Processing 17, 65–70 (1981)

    Article  Google Scholar 

  14. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 52(2), 137–154 (2004)

    Article  Google Scholar 

  15. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vision Computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

  16. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)

    Article  Google Scholar 

  17. Mahmood, A., Kahn, S.: Exploiting Inter-frame Correlation for Fast Video to Reference Image Alignment. In: Proc. 8th Asian Conference on Computer Vision (2007)

    Google Scholar 

  18. Pele, O., Werman, M.: Robust real time pattern matching using Bayesian sequential hypothesis testing. IEEE Trans. Pattern Analysis Machine Intelligence (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, SD., Pan, WH., Lai, SH. (2009). Efficient NCC-Based Image Matching Based on Novel Hierarchical Bounds. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics