Skip to main content

Concept-Specific Visual Vocabulary Construction for Object Categorization

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

  • 1105 Accesses

Abstract

Recently, the bag-of-words (BOW) based image representation is getting popular in object categorization. However, there is no available visual vocabulary and it has to be learned. As to traditional learning methods, the vocabulary is constructed by exploring only one type of feature or simply concatenating all kinds of visual features into a long vector. Such constructions neglect distinct roles of different features on discriminating object categories. To address the problem, we propose a novel method to construct a conceptspecific visual vocabulary. First, we extract various visual features from local image patches, and cluster them separately according to different features to generate an initial vocabulary. Second, we formulate the concept-specific visual words selection and object categorization into a boosting framework. Experimental results on PASCAL 2006 challenge data set demonstrate the encouraging performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1981)

    Google Scholar 

  2. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  3. Sivic, J.S., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: 9th IEEE International Conference on Computer Vision, Nice, pp. 1470–1477 (2003)

    Google Scholar 

  4. Farquhar, J., Szedmak, S., Meng, H., Shawe-Taylor, J.: Improving “bag-of-keypoints” Image Categorization: Generative Models and PDF-Kernels. Technical report, University of Southampton (2005)

    Google Scholar 

  5. Perronnin, F., Dance, C., Csurka, G., Bressan, M.: Adapted Vocabularies for Generic Visual Categorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 464–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Winn, K., Criminisi, A., Minka, T.: Object Categorization by Learned Universal Visual Dictionary. In: 10th IEEE International Conference on Computer Vision, Beijing, pp. 1800–1807 (2003)

    Google Scholar 

  7. Moosmann, F., Triggs, B., Jurie, F.: Fast Discriminative Visual Codebooks Using Randomized Clustering Forests. In: 20th Annual Conference on Neural Information Processing Systems, Hyatt, pp. 985–992 (2006)

    Google Scholar 

  8. Hsu, W.H., Chang, S.-F.: Visual Cue Cluster Construction via Information Bottleneck Principle and Kernel Density Estimation. In: 4th International Conference on Image and Video Retrieval, Singapore, pp. 82–91 (2005)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: 13th International Conference on Machine Learning, Italy, pp. 148–156 (1996)

    Google Scholar 

  10. Everingham, M., Zisserman, A., Williams, C., Gool, L.: The 2006 PASCAL visual object classes challenge (2006)

    Google Scholar 

  11. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: A Statistical View of Boosting. Annals of Statistics 28(2), 337–407 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, C., Liu, J., Ouyang, Y., Lu, H., Ma, S. (2009). Concept-Specific Visual Vocabulary Construction for Object Categorization. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics