Abstract
This paper provides an effective prior for image denoising in a Bayesian framework. The prior combines two well-known discontinuity measures which have been used in illumination normalization methods. We make use of the two measures as a singular new prior for image denoising in a Bayesian framework. Various experiments show that the proposed prior can reduce noise from corrupted images while preserve edge components efficiently. By comparative studies with conventional methods, we demonstrate that the proposed method achieves impressive performance with respect to noise reduction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geman, S., Geman, D.: Stochastic relaxation, Gibbs Distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)
Sanches, J.M., Nascimento, J.C., Marques, J.S.: Medical Image Noise Reduction Using the Sylvester–Lyapunov Equation. IEEE Transactions on Image Processing 17(9), 1522–1539 (2008)
Malfait, M., Roose, D.: Wavelet-based image denoising using a Markov random field a priori model. IEEE Transactions on image processing 6(4), 549–565 (1997)
Sanches, J.M., Marques, J.S.: Image Denoising Using the Lyapunov Equation from Non-uniform Samples. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 351–358. Springer, Heidelberg (2006)
Li, S.: Markov Random Field Modeling in Computer Vision. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 361–370. Springer, Heidelberg (1994)
Park, Y.K., Jung, K., Oh, Y., Lee, S., Kim, J.K., Lee, G., Lee, H., Yun, K., Hur, N., Kim, J.: Depth-image-based rendering for 3DTV service over T-DMB. Signal Processing: Image Communication 24(1-2), 122–136 (2009)
Besag, J.: On the statistical analysis of dirty pictures. J. Royal Statistical Soc. 48(3), 259–302 (1986)
Kim, H.S., Jung, C., Choi, S., Lee, S., Kim, J.K.: A New Approach for Bayesian Denoising in Images Using an Object Homogeneity Prior. In: Proc. ITC-CSCC, pp. 484–487 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, H.S., Jung, C., Choi, S., Lee, S., Kim, J.K. (2009). A Novel Approach for Bayesian Image Denoising Using a SGLI Prior. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_93
Download citation
DOI: https://doi.org/10.1007/978-3-642-10467-1_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10466-4
Online ISBN: 978-3-642-10467-1
eBook Packages: Computer ScienceComputer Science (R0)