Skip to main content

Vessels-Cut: A Graph Based Approach to Patient-Specific Carotid Arteries Modeling

  • Conference paper
Modelling the Physiological Human (3DPH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5903))

Included in the following conference series:

Abstract

We present a nearly automatic graph-based segmentation method for patient specific modeling of the aortic arch and carotid arteries from CTA scans for interventional radiology simulation. The method starts with morphological-based segmentation of the aorta and the construction of a prior intensity probability distribution function for arteries. The carotid arteries are then segmented with a graph min-cut method based on a new edge weights function that adaptively couples the voxel intensity, the intensity prior, and geometric vesselness shape prior. Finally, the same graph-cut optimization framework is used for nearly automatic removal of a few vessel segments and to fill minor vessel discontinuities due to highly significant imaging artifacts. Our method accurately segments the aortic arch, the left and right subclavian arteries, and the common, internal, and external carotids and their secondary vessels. It does not require any user initialization, parameters adjustments, and is relatively fast (150–470 secs). Comparative experimental results on 30 carotid arteries from 15 CTAs from two medical centres manually segmented by expert radiologist yield a mean symmetric surface distance of 0.79mm (std=0.25mm). The nearly automatic refinement requires about 10 seed points and took less than 2mins of treating physician interaction with no technical support for each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  2. Kim, D., Park, J.: Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image and Vis. Comp. 23(14), 1277–1287 (2005)

    Article  Google Scholar 

  3. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  4. Lorigo, L., et al.: Curves: Curve evolution for vessel segmentation. Med. Image Anal. 5, 195–206 (2001)

    Article  Google Scholar 

  5. Nain, D., Yezzi, A., Turk, G.: Vessel segmentation using a shape driven flow. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 51–59. Springer, Heidelberg (2004)

    Google Scholar 

  6. Lekadir, K., Merrifield, R., Guang-Zhong, Y.: Outlier detection and handling for robust 3-D active shape models search. IEEE Trans. Med. Imaging 26(2), 212–222 (2007)

    Article  Google Scholar 

  7. Schaap, M., et al.: Bayesian tracking of tubular structures and its application to carotid arteries in CTA. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 562–570. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Manniesing, R., Viergever, M., Niessen, W.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)

    Article  Google Scholar 

  9. Friman, O., Hindennach, M., Peitgen, H.O.: Template-based multiple hypotheses tracking of small vessels. In: Proc. of the 5th IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro. ISBI 2008, pp. 1047–1050 (2008)

    Google Scholar 

  10. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. of Comp. Vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  11. Kang, L., Xiaodong, W., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Patt. Anal. and Mach. Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  12. Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior. In: Proc. of the 2005 IEEE Int. Conf. on Image Processing, ICIP 2005, vol. 2, pp. 1222–1225 (2005)

    Google Scholar 

  13. Sinop, A., Grady, L.: Accurate banded graph cut segmentation of thin structures using laplacian pyramids. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 896–903. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Ning, X., Narendra, A., Ravi, B.: Object segmentation using graph cuts based active contours. Comp. Vision and Image Understanding 107(3), 210–224 (2007)

    Article  Google Scholar 

  15. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  16. Freiman, M., Eliassaf, O., Taieb, Y., Joskowicz, L., Sosna, J.: A bayesian approach for liver analysis: Algorithm and validation study. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 85–92. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: A grand challenge (2007), http://www.sliver07.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freiman, M. et al. (2009). Vessels-Cut: A Graph Based Approach to Patient-Specific Carotid Arteries Modeling. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10470-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10468-8

  • Online ISBN: 978-3-642-10470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics