Abstract
We present a nearly automatic graph-based segmentation method for patient specific modeling of the aortic arch and carotid arteries from CTA scans for interventional radiology simulation. The method starts with morphological-based segmentation of the aorta and the construction of a prior intensity probability distribution function for arteries. The carotid arteries are then segmented with a graph min-cut method based on a new edge weights function that adaptively couples the voxel intensity, the intensity prior, and geometric vesselness shape prior. Finally, the same graph-cut optimization framework is used for nearly automatic removal of a few vessel segments and to fill minor vessel discontinuities due to highly significant imaging artifacts. Our method accurately segments the aortic arch, the left and right subclavian arteries, and the common, internal, and external carotids and their secondary vessels. It does not require any user initialization, parameters adjustments, and is relatively fast (150–470 secs). Comparative experimental results on 30 carotid arteries from 15 CTAs from two medical centres manually segmented by expert radiologist yield a mean symmetric surface distance of 0.79mm (std=0.25mm). The nearly automatic refinement requires about 10 seed points and took less than 2mins of treating physician interaction with no technical support for each case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)
Kim, D., Park, J.: Connectivity-based local adaptive thresholding for carotid artery segmentation using MRA images. Image and Vis. Comp. 23(14), 1277–1287 (2005)
Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Lorigo, L., et al.: Curves: Curve evolution for vessel segmentation. Med. Image Anal. 5, 195–206 (2001)
Nain, D., Yezzi, A., Turk, G.: Vessel segmentation using a shape driven flow. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 51–59. Springer, Heidelberg (2004)
Lekadir, K., Merrifield, R., Guang-Zhong, Y.: Outlier detection and handling for robust 3-D active shape models search. IEEE Trans. Med. Imaging 26(2), 212–222 (2007)
Schaap, M., et al.: Bayesian tracking of tubular structures and its application to carotid arteries in CTA. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 562–570. Springer, Heidelberg (2007)
Manniesing, R., Viergever, M., Niessen, W.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)
Friman, O., Hindennach, M., Peitgen, H.O.: Template-based multiple hypotheses tracking of small vessels. In: Proc. of the 5th IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro. ISBI 2008, pp. 1047–1050 (2008)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. of Comp. Vision 70(2), 109–131 (2006)
Kang, L., Xiaodong, W., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Patt. Anal. and Mach. Intell. 28(1), 119–134 (2006)
Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior. In: Proc. of the 2005 IEEE Int. Conf. on Image Processing, ICIP 2005, vol. 2, pp. 1222–1225 (2005)
Sinop, A., Grady, L.: Accurate banded graph cut segmentation of thin structures using laplacian pyramids. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 896–903. Springer, Heidelberg (2006)
Ning, X., Narendra, A., Ravi, B.: Object segmentation using graph cuts based active contours. Comp. Vision and Image Understanding 107(3), 210–224 (2007)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)
Freiman, M., Eliassaf, O., Taieb, Y., Joskowicz, L., Sosna, J.: A bayesian approach for liver analysis: Algorithm and validation study. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 85–92. Springer, Heidelberg (2008)
Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: A grand challenge (2007), http://www.sliver07.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freiman, M. et al. (2009). Vessels-Cut: A Graph Based Approach to Patient-Specific Carotid Arteries Modeling. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-10470-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10468-8
Online ISBN: 978-3-642-10470-1
eBook Packages: Computer ScienceComputer Science (R0)