Skip to main content

MotionLab: A Matlab Toolbox for Extracting and Processing Experimental Motion Capture Data for Neuromuscular Simulations

  • Conference paper
Modelling the Physiological Human (3DPH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5903))

Included in the following conference series:

Abstract

During the last years several neuromuscular simulation platforms have been developed, from commercial tools to open-source based solutions to pure in-house solutions which are not public available. A major problem in running neuromuscular simulations in any of these tools are that there exist an infinitive number of motion capture laboratory setups. In this paper, the authors present a Matlab toolbox that provides a solution for this problem. The toolbox can easily be setup for any new experiment with minimal changes to the simulation environment. The toolbox provides powerful pre-simulation features such as filtering, markers evaluations and calculations of new marker setups. After that a simulation has been performed, results can be read back and several post-simulation features are available to validate the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–Journal of Basic Engineering 82, 35–45 (1966)

    Google Scholar 

  2. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T.: Guendelman E and Thelen DG, OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  3. Delp, S.L., Loan, J.P., Hoy, H.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37(8), 757–767 (1990)

    Article  Google Scholar 

  4. Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker coordinates using global optimization with joint constraints. Journal of Biomechanics 32, 129–134 (1999)

    Article  Google Scholar 

  5. De Groote, F., De Laet, T., Jonkers, I., De Schutter, J.: Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis. Journal of Biomechanics 41(16), 3390–3398 (2008)

    Article  Google Scholar 

  6. Rasmussen, J., de Zee, M.: Design Optimization of Airline Seats. SAE International Journal of Passenger Cars - electronic and electrical systems 1(1), 580–584 (2008)

    Google Scholar 

  7. Fox, M.D., Reinbolt, J.A., Õunpuu, S., Delp, S.L.: Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics 42(5), 614–619 (2009)

    Article  Google Scholar 

  8. Klein Horsman, M.D., Koopman, H.F.J.M., van der Helm, F.C.T., Poliacu Prose, L., Veeger, H.E.J.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clinical Biomechanics 22(2), 239–247 (2007)

    Article  Google Scholar 

  9. Motion Lab Systems (July 2009), http://www.c3d.org/

  10. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research 8(3), 383–392 (1990)

    Article  Google Scholar 

  11. Castagno, P., Richards, J., Miller, F., Lennon, N.: Comparison of 3-dimensional lower extremity kinematics during walking gait using two different marker sets. Gait & Posture 3(2), 87 (1995)

    Article  Google Scholar 

  12. Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody Modeling System 14(8), 1100–1111 (2006)

    Google Scholar 

  13. Zhang, L.-Q., Wang, G.: Dynamic and static control of the human knee joint in abduction-adduction. Journal of Biomechanics 34(9), 1107–1115 (2001)

    Article  Google Scholar 

  14. Holzbaur, K., Murray, V., Delp, S.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering 33(6), 829–869 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandholm, A., Pronost, N., Thalmann, D. (2009). MotionLab: A Matlab Toolbox for Extracting and Processing Experimental Motion Capture Data for Neuromuscular Simulations. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10470-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10468-8

  • Online ISBN: 978-3-642-10470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics