Skip to main content

HMM Approach for Classifying Protein Structures

  • Conference paper
Future Generation Information Technology (FGIT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5899))

Included in the following conference series:

Abstract

To understand the structure-to-function relationship, life sciences researchers and biologists need to retrieve similar structures from protein databases and classify them into the same protein fold. With the technology innovation the number of protein structures increases every day, so, retrieving structurally similar proteins using current structural alignment algorithms may take hours or even days. Therefore, improving the efficiency of protein structure retrieval and classification becomes an important research issue. In this paper we propose novel approach which provides faster classification (minutes) of protein structures. We build separate Hidden Markov Model for each class. In our approach we align tertiary structures of proteins. Additionally we have compared our approach against an existing approach named 3D HMM. The results show that our approach is more accurate than 3D HMM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  2. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  3. Orengo, C.A., Michie, A.D., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH–A Hierarchic Classification of Protein Domain Structures. Structure 5(8), 1093–1108 (1997)

    Article  Google Scholar 

  4. Holm, L., Sander, C.: The FSSP Database: Fold Classification Based on Structure- Structure Alignment of Proteins. Nucleic Acids Research 24, 206–210 (1996)

    Article  Google Scholar 

  5. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  Google Scholar 

  6. Kim, Y.J., Patel, J.M.: A framework for protein structure classification and identification of novel protein structures. BMC Bioinformatics 7, 456 (2006)

    Article  Google Scholar 

  7. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. on Pattern and Machine Intell. 18(6), 607–616 (1996)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  9. Khati, P.: Comparative analysis of protein classification methods. Master Thesis. University of Nebraska, Lincoln (2004)

    Google Scholar 

  10. Plötz, T., Fink, G.A.: Pattern recognition methods for advanced stochastic protein sequence analysis using HMMs. Pattern Recognition 39, 2267–2280 (2006)

    Article  MATH  Google Scholar 

  11. Alexandrov, V., Gerstein, M.: Using 3D Hidden Markov Models that explicitly represent spatial coordinates to model and compare protein structures. BMC Bioinformatics 5, 2 (2004)

    Article  Google Scholar 

  12. Fujita, M., Toh, H., Kanehisa, M.: Protein sequence-structure alignment using 3D-HMM. In: Fourth International Workshop on Bioinformatics and Systems Biology (IBSB 2004). Poster Abstracts: 7–8, Kyoto, Japan (2004)

    Google Scholar 

  13. Can, T., Camoglu, O., Singh, A.K., Wang, Y.F.: Automated protein classification using consensus decision. In: Third Int. IEEE Computer Society Computational Systems Bioinformatics Conference, Stanford, pp. 224–235 (2004)

    Google Scholar 

  14. Cheek, S., Qi, Y., Krishna, S.S., Kinch, L.N., Grishin, N.V.: Scopmap: Automated assignment of protein structures to evolutionary superfamilies. BMC Bioinformatics 5(1), 197 (2004)

    Article  Google Scholar 

  15. Camoglu, O., Can, T., Singh, A.K., Wang, Y.F.: Decision tree based information integration for automated protein classification. J. Bioinform. Comput. Biol. 3(3), 717–742 (2005)

    Article  Google Scholar 

  16. Ortiz, A.R., Strauss, C.E., Olmea, O.: Mammoth (matching molecular models obtained from theory): An automated method for model comparison. Protein Science 11, 2606–2621 (2002)

    Article  Google Scholar 

  17. Shindyalov, H.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (ce) of the optimal path. Protein Eng. 9, 739–747 (1998)

    Article  Google Scholar 

  18. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)

    Article  Google Scholar 

  19. Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Transactions on Information Theory 48, 1518–1569 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  21. Churchill, G.A.: Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51, 79–94 (1998)

    MathSciNet  Google Scholar 

  22. Karchin, R.: Hidden Markov Models and Protein Sequence Analysis. In: Seventh International Conference on Intelligent Systems for Molecular Biology – ISMB (1999)

    Google Scholar 

  23. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  24. Durbin, R., Edy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  25. Mirceva, G., Kalajdziski, S., Trivodaliev, K., Davcev, D.: Comparative Analysis of three efficient approaches for retrieving protein 3D structures. In: 4-th Cairo International Biomedical Engineering Conference 2008 (CIBEC 2008), Cairo, Egypt, pp. 1–4 (2008)

    Google Scholar 

  26. SCOP (Structural Classification of Proteins) Database, http://scop.mrc-lmb.cam.ac.uk/scop/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirceva, G., Davcev, D. (2009). HMM Approach for Classifying Protein Structures. In: Lee, Yh., Kim, Th., Fang, Wc., Ślęzak, D. (eds) Future Generation Information Technology. FGIT 2009. Lecture Notes in Computer Science, vol 5899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10509-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10509-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10508-1

  • Online ISBN: 978-3-642-10509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics