Abstract
In this paper we analyze numerical optimization procedures in the context of level set based image segmentation. The Chan-Vese functional for image segmentation is a general and popular variational model. Given the corresponding Euler-Lagrange equation to the Chan-Vese functional the region based segmentation is usually done by solving a differential equation as an initial value problem. While most works use the standard explicit Euler method, we analyze and compare this method with two higher order methods (second and third order Runge-Kutta methods). The segmentation accuracy and the dependence of these methods on the involved parameters are analyzed by numerous experiments on synthetic images as well as on real images. Furthermore, the performance of the approaches is evaluated in a segmentation benchmark containing 1023 images. It turns out, that our proposed higher order methods perform more robustly, more accurately and faster compared to the commonly used Euler method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 1985, pp. 22–26. IEEE Computer Society Press, Springer (1985)
Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)
Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)
Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: introducing statistical shape knowledge into the mumford-shah functional. International Journal of Computer Vision 50(3), 295–313 (2002)
Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, pp. 699–704 (2003)
Cremers, D., Yuille, A.L.: A generative model based approach to motion segmentation. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 313–320. Springer, Heidelberg (2003)
Malladi, R., Sethian, J., Vemuri, B.: Shape modelling with front propagation: A level set approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 17(2), 158–174 (1995)
Paragios, N., Deriche, R.: Unifying boundary and region based information for geodesic active tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition., Forth Collins, Colorado, vol. 2, pp. 300–305. IEEE Computer Society Press, Los Alamitos (1999)
Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2007)
Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)
Brox, T., Weickert, J.: Level set based segmentation of multiple objects. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 415–423. Springer, Heidelberg (2004)
Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Brox, T., Weickert, J.: A tv flow based local scale estimate and its application to texture discrimination. Journal of Visual Communication and Image Representation 17(5), 1053–1073 (2006)
Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. International Journal of Computer Vision 63(1), 5–19 (2005)
Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics 77, 439–471 (1988)
Ge, F., Wang, S.: New benchmark for image segmentation evaluation. Journal of Electronic Imaging 16(3) (2007)
Cour, T., Yu, S., Shi, J.: Normalized cut image segmentation source code (2004), http://www.cis.upenn.edu/~jshi/software/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Scheuermann, B., Rosenhahn, B. (2009). Analysis of Numerical Methods for Level Set Based Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-10520-3_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10519-7
Online ISBN: 978-3-642-10520-3
eBook Packages: Computer ScienceComputer Science (R0)