Skip to main content

Analysis of Numerical Methods for Level Set Based Image Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

Abstract

In this paper we analyze numerical optimization procedures in the context of level set based image segmentation. The Chan-Vese functional for image segmentation is a general and popular variational model. Given the corresponding Euler-Lagrange equation to the Chan-Vese functional the region based segmentation is usually done by solving a differential equation as an initial value problem. While most works use the standard explicit Euler method, we analyze and compare this method with two higher order methods (second and third order Runge-Kutta methods). The segmentation accuracy and the dependence of these methods on the involved parameters are analyzed by numerous experiments on synthetic images as well as on real images. Furthermore, the performance of the approaches is evaluated in a segmentation benchmark containing 1023 images. It turns out, that our proposed higher order methods perform more robustly, more accurately and faster compared to the commonly used Euler method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 1985, pp. 22–26. IEEE Computer Society Press, Springer (1985)

    Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 18(9), 884–900 (1996)

    Article  Google Scholar 

  4. Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion snakes: introducing statistical shape knowledge into the mumford-shah functional. International Journal of Computer Vision 50(3), 295–313 (2002)

    Article  MATH  Google Scholar 

  5. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, pp. 699–704 (2003)

    Google Scholar 

  6. Cremers, D., Yuille, A.L.: A generative model based approach to motion segmentation. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 313–320. Springer, Heidelberg (2003)

    Google Scholar 

  7. Malladi, R., Sethian, J., Vemuri, B.: Shape modelling with front propagation: A level set approach. IEEE Transaction on Pattern Analysis and Machine Intelligence 17(2), 158–174 (1995)

    Article  Google Scholar 

  8. Paragios, N., Deriche, R.: Unifying boundary and region based information for geodesic active tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition., Forth Collins, Colorado, vol. 2, pp. 300–305. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  9. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2007)

    Article  Google Scholar 

  10. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brox, T., Weickert, J.: Level set based segmentation of multiple objects. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 415–423. Springer, Heidelberg (2004)

    Google Scholar 

  12. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Brox, T., Weickert, J.: A tv flow based local scale estimate and its application to texture discrimination. Journal of Visual Communication and Image Representation 17(5), 1053–1073 (2006)

    Article  Google Scholar 

  14. Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. International Journal of Computer Vision 63(1), 5–19 (2005)

    Article  Google Scholar 

  15. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ge, F., Wang, S.: New benchmark for image segmentation evaluation. Journal of Electronic Imaging 16(3) (2007)

    Google Scholar 

  17. Cour, T., Yu, S., Shi, J.: Normalized cut image segmentation source code (2004), http://www.cis.upenn.edu/~jshi/software/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheuermann, B., Rosenhahn, B. (2009). Analysis of Numerical Methods for Level Set Based Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics