Abstract
Electronic colon cleansing (ECC) is an alternative method that can be used to remove remaining tagged fecal material from colon during polyp detection in virtual colonoscopy (VC). This paper presents a new method for automatic electronic colon cleansing using gradient magnitude and similarity measure to detect and remove tagged material from colon in CTC images. First, Canny edge detection and 8-adjacency are used to generate closed boundary for low density (air) and high density regions (tagged material and bone). Then similarity measure is used to classify pixels into high density regions, and all the pixels that are classified as high density materials are removed. Finally, gradient magnitude and thresholding are used to detect AT and ATT layers. The proposed method was evaluated on four pilot dadasets from two patients and the experimental results reveal that the proposed method can perform colon cleansing effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liang, Z., Chen, D., Chiou, R., Kaufman, A., Wax, M., Viswambharan, A.: On segmentation of colon lumen for virtual colonoscopy. In: The SPIE Medical Imaging Conference, vol. 3660, pp. 270–278. SPIE, San Diego (1999)
Chen, D., Liang, Z., Wax, M.R., Li, L., Li, B., Kaufman, A.E.: A novel approach to extract colon lumen from CT images for virtual colonoscopy. IEEE transactions on medical imaging 19(12), 1220–1226 (2000)
Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE transactions on medical imaging 20(12), 1261–1274 (2001)
Li, L., Chen, D., Lakare, S., Kreeger, K., Bitter, I., Kaufman, A., Wax, M., Djuruc, P., Liang, Z.: An image segmentation approach to extract colon lumen through colonic material tagging and hidden Markov random field model for virtual colonoscopy. In: SPIE Medical Imaging Conference, vol. 4683, pp. 406–411. SPIE, San Diego (2002)
Serlie, I., Truoyen, R., Florie, J., Post, F., van Vliet, L.J., Vos, F.: Computed cleansing for virtual colonscopy using a three-material transaction model. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 175–183. Springer, Heidelberg (2003)
Zalis, M.E., Perumpilichira, J., Hahn, P.F.: Digital substraction bowel cleansing for CT colonography using morphological and linear filtration methods. IEEE transactions on medical imaging 23(11), 1335–1343 (2004)
Wang, Z., Liang, Z., Li, X., Li, L., Li, B., Eremina, D., Lu, H.: An Improved Electronic Colon Cleansing Method for Detection of Colonic Polyps by Virtual Colonoscopy. IEEE transactions on biomedical engineering 53(8), 1635–1646 (2006)
Serlie, I.W.O., Vos, F.M., Truyen, R., Post, F.H., van Vliet, L.J.: Classifying CT Image Data Into Material Fractions by a Scale and Rotation Invariant Edge Model. IEEE transactions on image processing 16(12), 2891–2904 (2007)
Cai, W., Zalis, M.E., Näppi, J., Harris, G.J., Yoshida, H.: Structure-analysis method for electronic cleansing in cathartic and noncathartic CT colonoscopy. Medical Physics 35(7), 3259–3277 (2008)
Ouadfel, S., Batouche, M.: An Efficient Ant Algorithm for Swarm-Based Image Clustering. Journal of Computer Science 3(3), 162–167 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chunhapongpipat, K., Vajragupta, L., Chaopathomkul, B., Cooharojananone, N., Lipikorn, R. (2009). Automatic Colon Cleansing in CTC Image Using Gradient Magnitude and Similarity Measure. In: Ślęzak, D., Pal, S.K., Kang, BH., Gu, J., Kuroda, H., Kim, Th. (eds) Signal Processing, Image Processing and Pattern Recognition. SIP 2009. Communications in Computer and Information Science, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10546-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-10546-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10545-6
Online ISBN: 978-3-642-10546-3
eBook Packages: Computer ScienceComputer Science (R0)