Skip to main content

An Efficient Method for Noisy Cell Image Segmentation Using Generalized α-Entropy

  • Conference paper
Signal Processing, Image Processing and Pattern Recognition (SIP 2009)

Abstract

In 1953, a functional extension by A. Rènyi to generalize traditional Shannon’s entropy known as α-entropies was proposed. The functionalities of α-entropies share the major properties of Shannon’s entropy. Moreover, these entropies can be easily estimated using a kernel estimate. This makes their use by many researchers in computer vision community highly appealing . In this paper, an efficient and fast entropic method for noisy cell image segmentation is presented. The method utilizes generalized α-entropy to measure the maximum structural information of image and to locate the optimal threshold desired by segmentation. To speed up the proposed method, computations are carried out on 1D histograms of image. Experimental results show that the proposed method is efficient and much more tolerant to noise than other state-of-the-art segmentation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazin, P.-L., Pham, D.L.: Topology Correction of Segmented Medical Images using a Fast Marching Algorithm. Computer Methods and Programs in Biomedicine 88(2), 182–290 (2007)

    Article  Google Scholar 

  2. Larie, S.M., Abukmeil, S.S.: Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. J. Psych. 172, 110–120 (1998)

    Google Scholar 

  3. Taylor, P.: Invited review: Computer aids for decision-making in diagnostic radiology- a literature review. Brit. J. Radiol. 68, 945–957 (1995)

    Article  Google Scholar 

  4. Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal MRI Studies of Older Adults: A Shrinking Brain. Journal of Neuroscience 23(8), 3295–3301 (2003)

    Google Scholar 

  5. Worth, A.J., Makris, N., Caviness, V.S., Kennedy, D.N.: Neuroanatomical segmentation in MRI: technological objectives. Int. J. Patt. Rec. Art. Intel. 11, 1161–1187 (1997)

    Article  Google Scholar 

  6. Khoo, V.S., Dearnaley, D.P., Finnigan, D.J., Padhani, A., Tanner, S.F., Leach, M.O.: Magnetic resonance imaging (MRI): considerations and applications in radiotheraphy treatment planning. Radiother. Oncol. 42, 1–15 (1997)

    Article  Google Scholar 

  7. Carter, J.C., Lanham, D.C., Bibat, G., Naidu, S., Kaufmann, W.E.: Selective Cerebral Volume Reduction in Rett Syndrome: A multiple approach MRI study. American Journal of Neuroradiology 29(3), 436–441 (2008)

    Article  Google Scholar 

  8. Tosun, D., Rettmann, M.E., Han, X., Tao, X., Xu, C., Resnick, S.M., Prince, J.L.: Cortical Surface Segmentation and Mapping. NeuroImage 23, S108–S118 (2004)

    Article  Google Scholar 

  9. Grimson, W.E.L., Ettinger, G.J., Kapur, T., Leventon, M.E., Wells, W.M.: Utilizing segmented MRI data in image-guided surgery. Int. J. Patt. Rec. Art. Intel. 11, 1367–1397 (1997)

    Article  Google Scholar 

  10. Bazin, P.-L., Pham, D.L.: Homeomorphic Brain Image Segmentation with Topological and Statistical Atlases. Medical Image Analysis 12(5), 616–625 (2008)

    Article  Google Scholar 

  11. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  12. Tsallis, C., Abe, S., Okamoto, Y.: Nonextensive Statistical Mechanics and its Applications. Lecture Notes in Physics. Springer, Berlin (2001)

    Google Scholar 

  13. Albuquerque, M., Esquef, I.A., Gesualdi Mello, A.R.: Image thresholding using Tsallis entropy. Pattern Recognition Letters 25, 1059–1065 (2004)

    Article  Google Scholar 

  14. Rényi, A.: On a theorem of P. Erdős and its application in information theory, Mathematica 1, 341–344 (1959)

    Google Scholar 

  15. Strzałka, D., Grabowski, F.: Towards possible q-generalizations of the Malthus and Verhulst growth models. Physica A 387(11), 2511–2518 (2008)

    Google Scholar 

  16. Singh, B., Partap, A.: Edge Detection in Gray Level Images based on the Shannon Entropy. Journal. of Computer Sci. 4(3), 186–191 (2008)

    Article  Google Scholar 

  17. Tsallis, C., Albuquerque, M.P.: Are citations of scientific paper a case of nonextensivity? Euro. Phys. J. B 13, 777–780 (2000)

    Article  Google Scholar 

  18. Tatsuaki, W., Takeshi, S.: When nonextensive entropy becomes extensive. Physica A 301, 284–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gonzalez, R.C., Woods, R.E.: Digital Image Processing Using Matlab, 2nd edn. Prentice Hall, Inc., Upper Saddle River (2003)

    Google Scholar 

  20. Levner, l., Zhang, H.: Classification-Driven Watershed Segmentation. IEEE Transactions on Image Processing 16(5), 1437–1445 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sadek, S., Al-Hamadi, A., Michaelis, B., Sayed, U. (2009). An Efficient Method for Noisy Cell Image Segmentation Using Generalized α-Entropy. In: Ślęzak, D., Pal, S.K., Kang, BH., Gu, J., Kuroda, H., Kim, Th. (eds) Signal Processing, Image Processing and Pattern Recognition. SIP 2009. Communications in Computer and Information Science, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10546-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10546-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10545-6

  • Online ISBN: 978-3-642-10546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics