Abstract
Statistical learning approaches, bounded mainly to knowledge related to perceptual manifestations of semantics, fall short to adequately utilise the meaning and logical connotations pertaining to the extracted image semantics. Instigated by the Semantic Web, ontologies have appealed to a significant share of synergistic approaches towards the combined use of statistical learning and explicit semantics. While the relevant literature tends to disregard the uncertainty involved, and treats the extracted image descriptions as coherent, two valued propositions, this paper explores reasoning under uncertainty towards a more accurate and pragmatic handling of the underlying semantics. Using fuzzy DLs, the proposed reasoning framework captures the vagueness of the extracted image descriptions and accomplishes their semantic interpretation, while resolving inconsistencies rising from contradictory descriptions. To evaluate the proposed reasoning framework, an experimental implementation using the fuzzyDL Description Logic reasoner has been carried out. Experiments in the domain of outdoor images illustrate the added value, while outlining challenges to be further addressed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Chang, S.F.: The holy grail of content-based. IEEE MultiMedia 9(2), 6–10 (2002)
Naphade, M., Huang, T.: Extracting semantics from audio-visual content: the final frontier in multimedia retrieval. IEEE Transactions on Neural Networks 13(4), 793–810 (2002)
Hanjalic, A., Lienhart, R., Ma, W., Smith, J.: The holy grail of multimedia information retrieval: So close or yet so far away. IEEE Proceedings, Special Issue on Multimedia Information Retrieval 96(4), 541–547 (2008)
Burges, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)
Heckerman, D.: A tutorial on learning with bayesian networks. Learning in Graphical Models, 301–354 (1998)
Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification 10(5), 1055–1064 (1999)
Naphade, M., Huang, T.: A probabilistic framework for semantic video indexing, filtering, and retrieval. IEEE Transactions on Multimedia 3(1), 141–151 (2001)
Assfalg, J., Bertini, M., Colombo, C., Bimbo, A.D.: Semantic annotation of sports videos. IEEE MultiMedia 9(2), 52–60 (2002)
Christmas, W.J., Jaser, E., Messer, K., Kittler, J.: A multimedia system architecture for automatic annotation of sports videos. In: ICVS, pp. 513–522 (2003)
Town, C., Sinclair, D.: A self-referential perceptual inference framework for video interpretation. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 54–67. Springer, Heidelberg (2003)
Snoek, C., Worring, M., van Gemert, J., Geusebroek, J., Smeulders, A.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proc. 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, October 23-27, pp. 421–430 (2006)
Rao, A., Jain, R.: Knowledge representation and control in computer vision systems. IEEE Expert, 64–79 (1988)
Crevier, D., Lepage, R.: Knowledge-based image understanding systems: A survey. Computer Vision and Image Understanding 67, 161–185 (1997)
Snoek, C., Huurnink, B., Hollink, L., Rijke, M., Schreiber, G., Worring, M.: Adding semantics to detectors for video retrieval. IEEE Transactions on Multimedia 9(5), 975–986 (2007)
Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From shiq and rdf to owl: the making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)
Horrocks, I., Patel-Schneider, P., Bechhofer, S., Tsarkov, D.: Owl rules: A proposal and prototype implementation. J. Web Semantics 3(1), 23–40 (2005)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The description logic handbook: Theory, implementation, and applications. In: Description Logic Handbook. Cambridge University Press, Cambridge (2003)
Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Mechanizing Mathematical Reasoning, pp. 228–248 (2005)
Hunter, J.: Adding Multimedia to the Semantic Web: Building an MPEG-7 Ontology. In: Proc. The First Semantic Web Working Symposium (SWWS), California, USA (July 2001)
Simou, N., Saathoff, C., Dasiopoulou, S., Spyrou, E., Voisine, N., Tzouvaras, V., Kompatsiaris, I., Avrithis, Y., Staab, S.: An ontology infrastructure for multimedia reasoning. In: Proc. International Workshop on Very Low Bitrate Video Coding (VLBV), Sardinia, Italy, September 15-16, pp. 51–60 (2005)
Arndt, R., Troncy, R., Staab, S., Hardman, L., Vacura, M.: COMM: Designing a well-founded multimedia ontology for the web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 30–43. Springer, Heidelberg (2007)
Dasiopoulou, S., Tzouvaras, V., Kompatsiaris, I., Strintzis, M.G.: Capturing mpeg-7 semantics. In: Proc. International Conference on Metadata and Semantics (MTSR), Corfu, Greece, October 11-12 (2007)
Troncy, R.: Integrating structure and semantics into audio-visual documents. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 566–581. Springer, Heidelberg (2003)
Hunter, J., Drennan, J., Little, S.: Realizing the hydrogen economy through semantic web technologies. IEEE Intelligent Systems Journal - Special Issue on eScience 19, 40–47 (2004)
Petridis, K., Bloehdorn, S., Saathoff, C., Simou, N., Dasiopoulou, S., Tzouvaras, V., Handschuh, S., Avrithis, Y., Kompatsiaris, I., Staab, S.: Knowledge representation and semantic annotation of multimedia content. IEE Proceedings on Vision Image and Signal Processing, Special issue on Knowledge-Based Digital Media Processing 153, 255–262 (2006)
Little, S., Hunter, J.: Rules-by-example – A novel approach to semantic indexing and querying of images. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 534–548. Springer, Heidelberg (2004)
Moller, R., Neumann, B., Wessel, M.: Towards computer vision with description logics: Some recent progress. In: Proc. Workshop on Integration of Speech and Image Understanding, Corfu, Greece, September 21, pp. 101–115 (1999)
Neumann, B., Moller, R.: On scene interpretation with description logics, FBI-B-257/04 (2004)
Bagdanov, A., Bertini, M., DelBimbo, A., Serra, G., Torniai, C.: Semantic annotation and retrieval of video events using multimedia ontologies. In: Proc. IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA, pp. 713–720 (2007)
Espinosa, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia interpretation as abduction. In: Proc. International Workshop on Description Logics (DL), Brixen-Bressanone, Italy, June 8-10, pp. 323–331 (2007)
Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V., Strintzis, M.: Knowledge-assisted semantic video object detection. IEEE Trans. Circuits Syst. Video Techn. 15(10), 1210–1224 (2005)
Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.: Using fuzzy dLs to enhance semantic image analysis. In: Duke, D., Hardman, L., Hauptmann, A., Paulus, D., Staab, S. (eds.) SAMT 2008. LNCS, vol. 5392, pp. 31–46. Springer, Heidelberg (2008)
Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification. In: Proc. 15th International Conference on Machine Learning (ICML), Madison, Wisconson, USA, July 24-27, pp. 341–349 (1998)
Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)
Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D., Jordan, M.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)
Hauptmann, A., Yan, R., Lin, W.H., Christel, M., Wactlar, H.: Can high-level concepts fill the semantic gap in video retrieval? a case study with broadcast news. IEEE Transactions on Multimedia 9(5), 958–966 (2007)
Niemann, H., Sagerer, G., Schröder, S., Kummert, F.: Ernest: A semantic network system for pattern understanding. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 883–905 (1990)
Reiter, R., Mackworth, A.K.: A logical framework for depiction and image interpretation. Artif. Intell. 41(2), 125–155 (1989)
Russ, T., MacGregor, R., Salemi, B., Price, K., Nevatia, R.: Veil: Combining semantic knowledge with image understanding. In: ARPA Image Understanding Workshop, Palm Springs, CA, USA, February 12-17 (1996)
Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP Magazine, [see also IEEE Signal Processing Magazine] 3(1), 4–16 (1986)
Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificail Intelligence 32(1-4), 35–66 (2001)
Zadeh, L.: Fuzzy sets. Information and Control 8(32), 338–353 (1965)
Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic: Theory and applications. Prentice-Hall, Englewood Cliffs (1995)
Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proc. 12th International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia, August 24-30, pp. 472–477 (1991)
Straccia, U.: A fuzzy description logic. In: Proc. International Conference on Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI), Madison, Wisconsin, July 26-30, pp. 594–599 (1998)
Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. (JAIR) 14, 137–166 (2001)
Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–399. Springer, Heidelberg (2004)
Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: The fuzzy description logic f-SHIN. In: International Workshop on Uncertainty Reasoning For the Semantic Web (URSW), Galway, Ireland, November 7, pp. 67–76 (2005)
Stoilos, G., Stamou, G., Pan, J.: Handling imprecise knowledge with fuzzy description logic. In: Proc. International Workshop on Description Logics (DL), Lake District, UK, pp. 119–127 (2006)
Bell, D., Qi, G., Liu, W.: Approaches to inconsistency handling in description-logic based ontologies. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1303–1311. Springer, Heidelberg (2007)
Lam, J., Sleeman, D., Pan, J., Vasconcelos, W.: A fine-grained approach to resolving unsatisfiable ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 62–95. Springer, Heidelberg (2008)
Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, pp. 73–90. Elsevier, Amsterdam (2006)
Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res. (JAIR) 30, 273–320 (2007)
Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with f-shin. In: 2nd International Workshop on Semantic Media Adaptation and Personalization (SMAP), London, UK, pp. 413–420 (2007)
Bobillo, F., Straccia, U.: fuzzydl: An expressive fuzzy description logic reasoner. In: Proc. International Conference on Fuzzy Systems (FUZZ), Hong Kong, June 1-6, pp. 923–930. IEEE Computer Society, Los Alamitos (2008)
Papadopoulos, G.T., Mylonas, P., Mezaris, V., Avrithis, Y., Kompatsiaris, I.: Knowledge-assisted image analysis based on context and spatial optimization (2006)
Umberto, S., Giulio, V.: Dlmedia: an ontology mediated multimedia information retrieval system. In: Proc. International Workshop on Description Logics (DL), Brixen-Bressanone, Italy, June 8-10, pp. 467–475
Neumann, B., Weiss, T.: Navigating through logic-based scene models for high-level scene interpretations. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 212–222. Springer, Heidelberg (2003)
Schober, J.P., Hermes, T., Herzog, O.: Content-based image retrieval by ontology-based object recognition. In: Proc. KI 2004 Workshop on Applications of Description Logics (ADL), Ulm Germany, September 24, pp. 1–10 (2004)
Hu, B., Dasmahapatra, S., Lewis, P., Shadbolt, N.: Ontology-based medical image annotation with description logics. In: Proc. 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Sacramento, California, USA, November 3-5, pp. 77–83 (2002)
Dasiopoulou, S., Heinecke, J., Saathoff, C., Strintzis, M.: Multimedia reasoning with natural language support. In: Proc. IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA, September 17-19 (2007)
Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J. ACM 48(5), 909–970 (2001)
Mylonas, P., Vallet, D., Castells, P., Fernandez, M., Avrithis, Y.: Personalized information retrieval based on context and ontological knowledge 23(1), 73–100 (March 2008)
Leger, A., Heinecke, J., Nixon, L., Shvaiko, P., Charlet, J., Hobson, P., Goasdoue, F.: Semantic web take-off in a european industry perspective. In: Garcia, R. (ed.) Semantic Web for Business: Cases and Applications, ch. 1, pp. 1–29. IGI Global (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G. (2009). Applying Fuzzy DLs in the Extraction of Image Semantics. In: Spaccapietra, S., Delcambre, L. (eds) Journal on Data Semantics XIV. Lecture Notes in Computer Science, vol 5880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10562-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-10562-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10561-6
Online ISBN: 978-3-642-10562-3
eBook Packages: Computer ScienceComputer Science (R0)