Skip to main content

Automatic Extraction of Decision Rules from Non-deterministic Data Systems: Theoretical Foundations and SQL-Based Implementation

  • Conference paper
Database Theory and Application (DTA 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 64))

Included in the following conference series:

Abstract

We present a framework for SQL-based extraction of decision rules from data, with no need of retrieving massive amounts of rows from a database. We also explain how to design efficient methods for mining non-deterministic data, without any intermediate stages related to the analysis of undetermined values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2) (2006)

    Google Scholar 

  3. Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) Proc. of SIGMOD (2009)

    Google Scholar 

  4. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying scheme. In: Proc. of VLDB, pp. 1216–1227 (2005)

    Google Scholar 

  5. Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  6. Grzymała-Busse, J.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. Trans. Rough Sets 1, 78–95 (2004)

    Google Scholar 

  7. Infobright.org Forums, http://www.infobright.org/Forums/viewthread/288/ , http://www.infobright.org/Forums/viewthread/621/

  8. Kloesgen, W., Żytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  9. Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipski, W.: On Semantic Issues Connected with Incomplete Information Data Base. ACM Trans. DBS 4, 269–296 (1979)

    Google Scholar 

  11. Mitchell, T.: Machine Learning. Mc Graw Hill, Newyork (1998)

    Google Scholar 

  12. Nguyen, H.S., Nguyen, S.H.: Fast split selection method and its application in decision tree construction from large databases. Int. J. Hybrid Intell. Syst. 2(2), 149–160 (2005)

    MATH  Google Scholar 

  13. Pawlak, Z.: Information systems theoretical foundations. Inf. Syst. 6(3), 205–218 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sakai, H., Hayashi, K., Nakata, M., Ślęzak, D.: The Lower System, the Upper System and Rules with Stability Factor in Non-deterministic Information Systems. In: Proc. of RSFDGrC (2009) (in print)

    Google Scholar 

  15. Sakai, H., Ishibashi, R., Nakata, M.: On Rules and Apriori Algorithm in Non-deterministic Information Systems. Trans. Rough Sets 9, 328–350 (2008)

    Google Scholar 

  16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  17. Sarawagi, S., Thomas, S., Agrawal, R.: Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications. Research Report, http://www.almaden.ibm.com/cs/projects/iis/hdb/Publications/papers/sigmod98_dbi_rj.pdf

  18. Ślęzak, D., Eastwood, V.: Data warehouse technology by Infobright. In: Proc. of SIGMOD 2009, pp. 841–845 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ślęzak, D., Sakai, H. (2009). Automatic Extraction of Decision Rules from Non-deterministic Data Systems: Theoretical Foundations and SQL-Based Implementation. In: Ślęzak, D., Kim, Th., Zhang, Y., Ma, J., Chung, Ki. (eds) Database Theory and Application. DTA 2009. Communications in Computer and Information Science, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10583-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10583-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10582-1

  • Online ISBN: 978-3-642-10583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics