Skip to main content

Advancing the Deoxyribozyme-Based Logic Gate Design Process

  • Conference paper
DNA Computing and Molecular Programming (DNA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5877))

Included in the following conference series:

Abstract

We previously described a tic-tac-toe playing molecular auto- maton, MAYA-II, constructed from a molecular array of deoxyribozyme- based logic gates, that uses oligonucleotides as inputs and outputs. We are now developing an ensemble modeling tool for high-throughput oligonucleotide input and logic gate designs. The modeling tool is based on exhaustive reconstruction of both intended and unintended reactions between MAYA-II gates and inputs, and seeks to correlate empirical observations with computational predictions. We present results from computational analysis of the MAYA-II Yes logic gate and input interactions. Results indicate that in silico modeling correlates with experimental results, creating a predictive value and benchmark. These studies serve purpose towards our goal of constructing a generalized oligonucleotide library for expansion of molecular computation networks beyond hundreds, to millions of potential interactions, conferring greater functionality in terms of both reliability and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci. 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena, S.: Algorithms for testing that sets of DNA words concatenate without secondary structure. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 182–195. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nat. 429, 423–429 (2004)

    Article  Google Scholar 

  4. Cardelli, L.: Strand algebras for DNA computing (2009), http://lucacardelli.name/Papers

  5. Dirks, R., Lin, M., Winfree, E., Pierce, N.: Paradigms for Computational Nucleic Acid Design. Nucl. Acids Res. 32(4), 1392–1403 (2004)

    Article  Google Scholar 

  6. Dirks, R., Bois, J., Schaeffer, J., Winfree, E., Pierce, N.: Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM 49(1), 65–88 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flamm, C., Hofacker, I.: Beyond energy minimization: approaches to the kinetic folding of RNA. Chem. Mon. 139(4), 447–457 (2008)

    Article  Google Scholar 

  8. Harvey, S., Wang, C., Teletchea, S., Lavery, R.: Motifs in Nucleic Acids: Molecular Mechanics Restraints for Base Pairing and Base Stacking. Jour. Comp. Chem. 24(1), 1–9 (2003)

    Article  Google Scholar 

  9. Heitsch, C., Condon, A., Hoos, H.: From RNA Secondary Structure to Coding Theory: A Combinatorial Approach. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 215–228. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Hinsen, K.: The Molecular Modeling Toolkit: A New Approach to Molecular Simulations. Jour. Comp. Chem. 21(2), 79–85 (2000)

    Article  Google Scholar 

  11. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI - A Complex Pathway SImulator. Bionfrmtcs. 22, 3067–3074 (2006)

    Article  Google Scholar 

  12. Langtangen, H.: Python Scripting for Computational Science. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Macdonald, J., Yang, L., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B., Stefanovic, D., Stojanovic, M.: Medium Scale Integration of Molecular Logic Gates in an Automaton. Nano. Ltrs. 6(11), 2598–2603 (2006)

    Article  Google Scholar 

  14. Markham, N., Zuker, M.: DINAMelt web server for nucleic acid melting prediction. Nucl. Acids Res. 33, W577–W581 (2005)

    Google Scholar 

  15. Stojanovic, M., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nat. Biotech. 21(9), 1069–1074

    Google Scholar 

  16. Xayaphoummine, T., Bucher, T., Isambert, H.: Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucl. Acids Res. 33, 605–610 (2005)

    Article  Google Scholar 

  17. Zuker, M.: Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucl. Acids Res. 31(13), 3406–3415

    Google Scholar 

  18. National Select Agent Registry, http://www.selectagents.gov

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanning, M.L., Macdonald, J., Stefanovic, D. (2009). Advancing the Deoxyribozyme-Based Logic Gate Design Process. In: Deaton, R., Suyama, A. (eds) DNA Computing and Molecular Programming. DNA 2009. Lecture Notes in Computer Science, vol 5877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10604-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10604-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10603-3

  • Online ISBN: 978-3-642-10604-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics