Abstract
We consider a variant of two-point Euclidean shortest path query problem: given a polygonal domain, build a data structure for two-point shortest path query, provided that query points always lie on the boundary of the domain. As a main result, we show that a logarithmic-time query for shortest paths between boundary points can be performed using \(\tilde{O}(n^5)\) preprocessing time and \(\tilde{O}(n^5)\) space where n is the number of corners of the polygonal domain and the \(\tilde{O}\)-notation suppresses the polylogarithmic factor. This is realized by observing a connection between Davenport-Schinzel sequences and our problem in the parameterized space. We also provide a tradeoff between space and query time; a sublinear time query is possible using O(n 3 + ε) space. Our approach also extends to the case where query points should lie on a given set of line segments.
The authors would like to thank Matias Korman for fruitful discussion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions with applications. SIAM J. Comput. 26(6), 1714–1732 (1997)
Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computationaal Geometry, pp. 49–119. Elsevier Science Publishers B.V, Amsterdam (2000)
Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: Proc. 10th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 215–224 (1999)
Hershberger, J.: Finding the upper envelope of n line segments in O(n logn) time. Inf. Process. Lett. 33(4), 169–174 (1989)
Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)
Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)
Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Computational Geometry, 2nd edn., ch. 27, pp. 607–641. CRC Press, Inc., Boca Raton (2004)
Nivasch, G.: Improved bounds and new techniques for Davenport-Schinzel sequences and their generatlizations. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms, pp. 1–10 (2009)
Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Discrete Comput. Geom. 12, 327–345 (1994)
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bae, S.W., Okamoto, Y. (2009). Querying Two Boundary Points for Shortest Paths in a Polygonal Domain. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_106
Download citation
DOI: https://doi.org/10.1007/978-3-642-10631-6_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10630-9
Online ISBN: 978-3-642-10631-6
eBook Packages: Computer ScienceComputer Science (R0)