Skip to main content

Untangled Monotonic Chains and Adaptive Range Search

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Abstract

We present the first adaptive data structure for two-dimensional orthogonal range search. Our data structure is adaptive in the sense that it gives improved search performance for data with more inherent sortedness. Given n points on the plane, the linear-space data structure can answer range queries in O(logn + k + m) time, where m is the number of points in the output and k is the minimum number of monotonic chains into which the point set can be decomposed, which is \(O(\sqrt{n})\) in the worst case. Our result matches the worst-case performance of other optimal-time linear-space data structures, or surpasses them when \(k=o(\sqrt{n})\). Our data structure can also be made implicit, requiring no extra space beyond that of the data points themselves, in which case the query time becomes O(k logn + m). We present a novel algorithm of independent interest to decompose a point set into a minimum number of untangled, same-direction monotonic chains in O(kn + nlogn) time.

Funding for this research was made possible by NSERC Discovery Grants, the Canada Research Chairs Program, and the NSERC Strategic Grant on Optimal Data Structures for Organization and Retrieval of Spatial Data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree: A practically efficient and worst-case optimal R-tree. ACM Transactions on Algorithms 4(1) (2008)

    Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bloniarz, P.A., Ravi, S.S.: An Ω(n logn) lower bound for decomposing a set of points into chains. Information Processing Letters 31(6), 319–322 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chazelle, B., Guibas, L.J.: Fractional cascading: I. a data structuring technique. Algorithmica 1(2), 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. Journal of Discrete Algorithms 6(3), 381–392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fomin, F.V., Kratsch, D., Novelli, J.C.: Approximating minimum cocolorings. Information Processing Letters 84(5), 285–290 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Record (ACM Special Interest Group on Management of Data) 14(2), 47–57 (1984)

    Google Scholar 

  8. Kanth, K.V.R., Singh, A.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Lueker, G.S.: A data structure for orthogonal range queries. In: 19th Annual Symposium on Foundations of Computer Science (FOCS 1978), Long Beach, Ca., USA, pp. 28–34. IEEE Computer Society Press, Los Alamitos (1978)

    Chapter  Google Scholar 

  10. Munro, J.I.: A multikey search problem. In: Proceedings of the 17th Allerton Conference on Communication, Control and Computing, University of Illinois, pp. 241–244 (1979)

    Google Scholar 

  11. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Computational Geometry 42(4), 342–351 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Supowit, K.J.: Decomposing a set of points into chains, with applications to permutation and circle graphs. Information Processing Letters 21(5), 249–252 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. van Leeuwen, J., Schoone, A.A.: Untangling a traveling salesman tour in the plane. In: Proceedings of the 7th Conference on Graphtheoretic Concepts in Computer Science (WG 1981), München, Germany, pp. 87–98. Hanser Verlag (1981)

    Google Scholar 

  14. Yang, B., Chen, J., Lu, E., Zheng, S.Q.: A comparative study of efficient algorithms for partitioning a sequence into monotone subsequences. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 46–57. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arroyuelo, D. et al. (2009). Untangled Monotonic Chains and Adaptive Range Search. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics