Skip to main content

Approximating Points by a Piecewise Linear Function: I

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We study the problem of approximating a set of weighted planar points by a step function, and the problems of approximating non-weighted and weighted planar points by a (more general) piecewise linear function. We either improve the previously best-known results or give the first-known results for these problems. Our algorithms are based on interesting and nontrivial geometric techniques and data structures, which may find other applications. Further, we present the first-known results for the 3-D versions of the step function approximation problem.

This research was supported in part by NSF under Grants CCF-0515203 and CCF-0916606.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, P., DasGupta, B., Muthukrishnan, S.: Slice and dice: A simple, improved approximate tiling recipe. In: Proc. of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 455–464 (2002)

    Google Scholar 

  2. Buragohain, C., Shrivastava, N., Suri, S.: Space efficient streaming algorithms for the maximum error histogram. In: Proc. of the 23rd International Conference on Data Engineering (ICDE), pp. 1026–1035 (2007)

    Google Scholar 

  3. Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM Journal on Computing 21(4), 671–696 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chazelle, B., Guibas, L.: Fractional cascading: I. A data structuring technique. Algorithmica 1(1), 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, D.Z., Wang, H.: Approximating points by a piecewise linear function (manuscript, 2009)

    Google Scholar 

  6. Chen, D.Z., Wang, H.: Approximating points by a piecewise linear function: II. Dealing with outliers. In: Proc. of the 20th International Symposium on Algorithms and Computation, ISAAC (2009)

    Google Scholar 

  7. Díaz-Bánez, J., Mesa, J.: Fitting rectilinear polygonal curves to a set of points in the plane. European Journal of Operational Research 130(1), 214–222 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dyer, M.: Linear time algorithms for two- and three-variable linear programs. SIAM Journal on Computing 13(1), 31–45 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fournier, H., Vigneron, A.: Fitting a step function to a point set. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 442–453. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Frederickson, G.: Optimal algorithms for tree partitioning. In: Proc. of the 2nd Annual ACM-SIAM Symposium of Discrete Algorithms (SODA), pp. 168–177 (1991)

    Google Scholar 

  11. Goodrich, M.: Efficient piecewise-linear function approximation using the uniform metric. In: Proc. of the 10th Annual ACM Symposium on Computational Geometry, pp. 322–331 (1994)

    Google Scholar 

  12. Guha, S.: On the space—time of optimal, approximate and streaming algorithms for synopsis construction problems. The VLDB Journal – The International Journal on Very Large Data Bases 17(6), 1509–1535 (2008)

    Article  MathSciNet  Google Scholar 

  13. Guha, S., Shim, K.: A note on linear time algorithms for maximum error histograms. IEEE Transactions on Knowledge and Data Engineering 19(7), 993–997 (2007)

    Article  Google Scholar 

  14. Guha, S., Shim, K., Woo, J.: Rehist: Relative error histogram construction algorithms. In: Proc. of the 30th International Conference on Very Large Data Bases (VLDB), pp. 300–311 (2004)

    Google Scholar 

  15. Hakimi, S., Schmeichel, E.: Fitting polygonal functions to a set of points in the plane. CVGIP: Graphical Models and Image Processing 53, 132–136 (1991)

    Article  MATH  Google Scholar 

  16. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13, 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K.C., Suel, T.: Optimal histograms with quality gurantees. In: Proc. of the 24th International Conference on Very Large Data Bases (VLDB), pp. 275–286 (1998)

    Google Scholar 

  18. Karras, P., Sacharidis, D., Mamoulis, N.: Exploiting duality in summarization with deterministic guarantees. In: Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 380–389 (2007)

    Google Scholar 

  19. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 384–393 (1998)

    Google Scholar 

  20. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM Journal on Computing 12(1), 28–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists and trees. Nordic Journal of Computing 12(1), 1–17 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Mayster, Y., Lopez, M.: Approximating a set of points by a step function. Journal of Visual Communication & Image Representation 17, 1178–1189 (2006)

    Article  Google Scholar 

  23. Muller, D., Preparata, F.: Finding the intersection of two convex polyhedra. Theoretical Computer Science 7, 217–236 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Communications of the ACM 24, 574–578 (1981)

    Article  MATH  Google Scholar 

  25. Varadarajan, K.: Approximating monotone polygonal curves using the uniform metric. In: Proc. of the 12th Annual ACM Symposium on Computational Geometry, pp. 311–318 (1996)

    Google Scholar 

  26. Wang, D.: A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane. Pattern Recognition Letters 23(1), 329–334 (2002)

    Article  MATH  Google Scholar 

  27. Wang, D., Huang, N., Chao, H., Lee, R.: Plane sweep algorithms for the polynomial approximation problems with applications. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 515–522. Springer, Heidelberg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Wang, H. (2009). Approximating Points by a Piecewise Linear Function: I. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics