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Abstract

The submodular system k-partition problem is a problem of partitioning a given finite

set V into k non-empty subsets V1, V2, . . . , Vk so that
P

k

i=1
f(Vi) is minimized where f is

a non-negative submodular function on V , and k is a fixed integer. This problem contains

the hypergraph k-cut problem. In this paper, we design the first exact algorithm for k = 3

and approximation algorithms for k ≥ 4. We also analyze the approximation factor for the

hypergraph k-cut problem.

1 Introduction

A set function f : 2V → ℜ on a finite set V is called submodular if it satisfies f(X) + f(Y ) ≥
f(X ∩ Y ) + f(X ∪ Y ) for every pair of sets X, Y ⊆ V [1, 2]. Moreover, f is called symmetric if

f(X) = f(V \X) for every X ⊆ V , and non-negative if f(X) ≥ 0 for every X ⊆ V . A submodular

system is defined as a pair (V, f) of a finite set V and a submodular function f on V .

A k-partition Pk of (V, f) is defined as a partition of V into k non-empty sets V1, V2, . . . , Vk ⊆ V ,

i.e., Vi 6= ∅ for i ∈ {1, 2, . . . , k}, Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ k, and ∪k
i=1Vi = V . We denote the

partition by [V1, V2, . . . , Vk]. The cost of Pk, denoted by f(Pk) or f(V1, V2, . . . , Vk), is defined as
∑k

i=1 f(Vi). In this paper, we consider the submodular system k-partition problem, that asks to

find a minimum cost k-partition of given submodular system (V, f). Throughout this paper, it is

supposed that f is non-negative and given as an oracle which returns f(X) for X ⊆ V .

Submodularity often plays an essential role in studies on the connectivity of graphs. In fact,

the submodular system k-partition problem generalizes the graph k-cut problem and hypergraph

k-cut problem. For a graph or hypergraph G = (V, E) with weight w : E → ℜ, a k-cut is defined as

a set of edges whose removal divides G into at least k connected components. The k-cut problem

asks to find a minimum weight k-cut of the given graph or hypergraph.

For a graph G and X ⊆ V , define f(X) as
∑

e∈δ(X) w(e) where δ(X) denotes the set of

edges joining vertices in X and V \ X . It is known that this set function is symmetric and

submodular. For a k-partition [V1, V2, . . . , Vk] of V ,
∑k

i=1 f(Vi) is exactly twice the weight of a

k-cut disconnecting V1, V2, . . . , Vk each other. Hence the k-cut problem of undirected graphs can

be formulated as the k-partition problem with symmetric submodular systems.
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For hypergraphs, the cut function defined above does not formulate the k-cut problem as the

submodular k-partition problem. However, by defining submodular functions appropriately, it is

possible to formulate the hypergraph k-cut problem as the submodular system k-partition problem

(see Section 2). Note that the submodular functions used for this is not symmetric.

The graph k-cut problem is one of the fundamental problems in combinatorial optimization.

It is closely related to the reliability of networks, and has many applications, for example, to

the traveling salesperson problem, VLSI design, and evolutionary tree construction [4, 11]. Gold-

schmidt and Hochbaum [6] showed that the problem is NP-hard when k is not fixed. For fixed

k, they presented a polynomial-time algorithm. Its running time is O(nk2

T (n, m)) where T (n, m)

is time for computing max-flow in a graph consisting of n vertices and m edges. Note that

T (n, m) is known to be O(mn log(n2/m)) [5]. After their work, many polynomial-time algorithms

for fixed k are obtained. An algorithm due to Kamidoi, Yoshida and Nagamochi [8] runs in

O(n4k/(1−1.71/
√

k)−34T (n, m)). An algorithm due to Xiao [17] runs in O(n4k−log k). An algorithm

due to Thorup [14] runs in Õ(n2k). In addition, Karger and Stein [9] gave a random algorithm

running in O(n2(k−1) log3 n).

For the hypergraph k-cut problem, Xiao [16] designed a polynomial-time algorithm to the case

of k = 3. However, no polynomial-time algorithm is known when k is a fixed integer larger than 3.

With regards to approximation algorithms, Zhao, Nagamochi and Ibaraki [18] gave an algorithm

achieving the approximation factor (1 − 2
k )min{k, dmax} with the result due to Xiao [16], where

dmax denotes the maximum size of hyperedges. Moreover, with the reduction to the terminal

k-vertex cut problem in bipartite graphs (see Section 2), we can apply the LP-rounding algorithm

due to Garg, Vazirani and Yannakakis [3]. It achieves the approximation factor (2− 2
k ).

Little is known about the submodular k-partition problem. Queyranne [13] gave a (2 − 2
k )-

approximation algorithm for the problem with symmetric submodular functions. Zhao, Nagamochi

and Ibaraki [18] presented a (k − 1)-approximation algorithm for the problem with non-negative

submodular functions.

Besides the reduction from the hypergraph k-cut problem to the submodular system k-partition

problem and the terminal k-vertex cut problem, the contribution of this paper is to design algo-

rithms for the submodular system k-partition problem. For k = 3, we present a polynomial-time

algorithm for k = 3. For k ≥ 4, we give approximation algorithms. We also discuss the approx-

imation factor of the algorithms for the hypergraph k-cut problem. Table 1 summarizes these

approximation factors. Our algorithms perform well especially for small k. For hypergraph k-cut

problem with k ≥ 5, our algorithms present worse approximation factor than the algorithm due to

Garg, Vazirani and Yannakakis [3] for the terminal k-vertex cut problem. However, our algorithms

have an advantage since they do not need to solve the linear programming problems.

The key of our algorithms is uncrossing operation, which has been applied to many problems

related to submodular functions. In this paper, we prove a theorem on uncrossing k-partitions and

2-partitions satisfying some conditions (Theorem 4). This theorem is originally proven by Xiao [16]

for hypergraphs. We reveal in this paper that his result essentially relies only on submodularity

of the cut function in hypergraphs.

The rest of this paper is organized as follows. Section 2 introduces notations. It also describes

the reduction of the hypergraph k-cut problem to the terminal k-vertex cut problem in bipartite

graphs, and shows that the submodular system k-partition problem contains the hypergraph k-cut

problem. Section 3 proves several properties of k-partitions. Section 4 presents an exact algorithm

for the submodular system 3-partition problem. Section 5 gives an approximation algorithm for
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Table 1: Comparison of approximation factors by the previous best and our algorithms

hypergraph k-cut problem submodular system k-partition problem

k = 3 1 (Xiao [16])
2 (Zhao et al. [18])

1 (This paper)

k = 4
1.5 (Garg et al. [3]) 3 (Zhao et al. [18])

4/3 (This paper) 1.5 (This paper)

k = 5
1.6 (Garg et al. [3]) 4 (Zhao et al. [18])

5/3 (This paper) 2 (This paper)

k ≥ 6
2− 2/k (Garg et al. [3]) k − 1 (Zhao et al. [18])

k/2− 1 (This paper) k + 1− 2
√

k − 1 (This paper)

the submodular system 4-partition problem. It also analyses the approximation factor of the

algorithm for the hypergraph 4-cut problem. Section 6 designs an approximation algorithm for

the submodular system k-partition problem for k ≥ 5 together with discussing the approximation

factor for the hypergraph k-cut problem.

2 Preliminaries

2.1 Notations

In this paper, ℜ and ℜ+ stand for the sets of reals and non-negative reals, respectively. For a

submodular system (V, f), we denote |V | by n. Each v ∈ V is called a vertex. The complement of

a subset X of V is denoted by X (i.e., X = V \X).

Let [V1, V2, . . . , Vk] be a k-partition of a submodular system (V, f). Each Vi, i ∈ {1, 2, . . . , k} is

called a component of the partition. A k-partition is called h-size if its all components contain at

least h vertices. We note that a minimum h-size k-partition stands for a partition of minimum cost

among all the h-size k-partitions, and a h-size minimum k-partition stands for a h-size partition

of minimum cost among all the k-partitions.

For U ⊂ V , define a set function fU on U such that fU (X) = f(X) for all X ⊆ U . Notice

that if f is submodular, then fU is submodular. We call a submodular system (U, fU ) subsystem

of (V, f) induced by U .

For U ⊂ V , define VU as a set obtained from V by replacing U with a new single vertex u (i.e.,

VU = (V \ U) ∪ {u}). Moreover, define fU as a set function on VU such that for every X ⊆ VU ,

fU (X) = f(X) if u 6∈ X and fU (X) = f((X \ {u}) ∪ U) otherwise. It is easy to check that if f is

submodular, then fU is submodular. We call this operation shrinking U into u.

We say that a 2-partition [X, X] crosses a k-partition [Y1, Y2, . . . , Yk] if both X \Yi and X \Yi

are non-empty for all i ∈ {1, 2, . . . , k}. This means that, if [X, X] does not cross [Y1, Y2, . . . , Yk],

then there exists some i ∈ {1, 2, . . . , k} such that X ⊆ Yi or X ⊆ Yi. If k = 2, then [X, X] crosses

[Y1, Y2] whenever none of X ∩ Y1, X ∩ Y2, X ∩ Y1 and X ∩ Y2 is non-empty.

Suppose that a k-partition [V1, V2, . . . , Vk] and a 2-partition [X, X] of (V, f) satisfies X ⊆
Vi with some i ∈ {1, 2, . . . , k}. Then (VX , fX) has a k-partition [V ′

1 , V ′
2 , . . . , V ′

k] that satisfies

fX(V ′
1 , V ′

2 , . . . , V ′
k) = f(V1, V2, . . . , Vk); I.e, each k-partition of (V, f) whose some component con-

tains X corresponds to a k-partition of (VX , fX). The contrary also holds. Throughout this paper,

3



we do not distinguish such a k-partition of (V, f) with the corresponding one of (VX , fX).

For a finite set V , a hyperedge is defined as a subset of V . A hypergraph is defined as a

pair (V, E) of V and a set E of hyperedges on V . Let U1, U2, . . . , Uℓ be disjoint subsets of V .

Then δ(U1, U2, . . . , Uℓ) denotes the set of edges in E that intersect at least two of U1, U2, . . . , Uℓ.

Moreover, δe(U1, U2, . . . , Uℓ) denotes the set of edges in δ(U1, U2, . . . , Uℓ) that do not intersect

V \ (U1 ∪ U2 ∪ · · · ∪ Uℓ). When a weight w : E → ℜ+ is given, we define w(U1, U2, . . . , Ui) =
∑

e∈δ(U1,U2,...,Uℓ)
w(e), and we(U1, U2, . . . , Uℓ) =

∑

e∈δe(U1,U2,...,Uℓ)
w(e).

The cost of a k-cut for a hypergraph G can be represented by w(V1, V2, . . . , Vk) where V1, V2, . . . , Vk

represent vertex sets of connected components after removing the k-cut. Hence the hypergraph

k-cut problem can be regarded as a problem of computing a k-partition [V1, V2, . . . , Vk] of V

minimizing w(V1, V2, . . . , Vk). Hence we denote a k-cut by a k-partition of V in this paper.

For U ⊆ V , GU denotes the hypergraph obtained by removing all vertices in V \ U and

hyperedges intersecting V \ U from G, and GU denotes the hypergraph obtained from G by

shrinking U into a single vertex.

Given two vertices s and t, a (s, t)-partition is a 2-partition such that s and t are in differ-

ent components. In this paper, time complexities of algorithms are evaluated by the number of

computing minimum (s, t)-partitions. A minimum (s, t)-partition of a submodular system (V, f)

can be computed by minimizing (asymmetric) submodular function f ′ on V \ {t} which is defined

with an enough large constant M by f ′(X) = fV \{t}(X) if s ∈ X and f ′(X) = fV \{t}(X) + M

otherwise. See [7] for recent algorithmic development of the submodular function minimization.

Gueyranne [12] showed that computing minimum (s, t)-partitions of symmetric submodular sys-

tems is as hard as minimizing (asymmetric) submodular functions. In hypergraphs (V, E), min-

imum (s, t)-partitions can be computed by finding a maximum flow in digraphs with |V | + 2|E|
vertices and |E|+ 2

∑

e∈E |e| edges [10].

2.2 Reduction of the hypergraph k-cut problem

In the terminal k-vertex cut problem, an undirected graph (V, E) with vertex weight w : V → ℜ
and k terminals t1, t2, . . . , tk ∈ V are given. A vertex cut is defined as a subset U of V whose

removal disconnects given terminals each other. The objective of the problem is to find a vertex

cut U minimizing
∑

v∈U w(v). First, let us observe that the hypergraph k-cut problem can be

reduced to the terminal k-vertex cut problem with bipartite graphs.

Let G = (V, E) be a hypergraph with weight w : E → ℜ+. Let VE be the set of vertices

corresponding to E while ve ∈ VE denotes the vertex corresponding to e ∈ E. Define E′ as a set

of edges on V ∪ VE such that E′ contains an edge joining u ∈ V and ve ∈ VE if and only if the

hyperedge e contains u in G. Then the bipartite graph B = (V ∪ VE , E′) can be defined from

G. Define a vertex-weight w′ : V ∪ VE such that w′(v) = +∞ for v ∈ V and w′(ve) = w(e) for

ve ∈ VE .

Choosing k terminals from V , solve the terminal k-vertex cut problem with B and w′. Obtained

minimum vertex cut U contains no vertex in V by the definition of w′. Let F ⊆ E be the set of

hyperedges corresponding to vertices in U . Then F is a k-cut of hypergraph G because removing

F from G disconnects the k vertices in V chosen as terminals in the terminal k-vertex cut problem

each other. Moreover,
∑

e∈F w(e) =
∑

v∈U w′(v) holds. Therefore, by solving the terminal k-

vertex cut problem with choosing every set of k vertices in V as terminals, we can solve the

hypergraph k-cut problem.
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Notice that this reduction preserves the approximation factor. Hence with a
(

2− 2
k

)

-approximation

algorithm [3] to the terminal k-vertex cut problem, we obtain the following.

Theorem 1. The hypergraph k-cut problem can be approximated within a factor of 2 − 2
k if k is

fixed.

We can reduce the hypergraph k-cut problem to the submodular k-partition problem as follows.

Obtain a directed hypergraph by orienting G = (V, E) arbitrarily. In other words, for each

hyperedge e ∈ E, define the head denoted by h(e) as an arbitrary vertex v contained by e.

Moreover, define a set function fG : 2V → ℜ as the in-degree function of the directed hypergraph

with hyperedge weight w : E → ℜ+, i.e., fG(X) =
∑{w(e) | e ∈ E, h(e) ∈ X, e \ X 6= ∅}

for X ⊆ V . It is easy to prove that function fG is submodular. A k-cut [V1, V2, . . . , Vk] of the

hypergraph G = (V, E) satisfies w(V1, V2, . . . , Vk) = fG(V1, V2, . . . , Vk). Therefore, we obtain the

following.

Theorem 2. The hypergraph k-cut problem is contained by the submodular system k-partition

problem.

We note that the submodular function defined from the hypergraph is not symmetric. This is

the difference between the graph k-cut problem and the hypergraph k-cut problem.

3 Basic property of partitions

In this section, we prove two important properties of k-partitions.

Theorem 3. Let [X1, X2, . . . , Xk] be a minimum k-partition of a submodular system (V, f). More-

over, let X = ∪h
j=1Xij

for {i1, i2, . . . , ih} ⊆ {1, 2, . . . , k}. Then [Xi1 , Xi2 , . . . , Xih
] is a minimum

h-partition of (X, fX).

Proof. Assuming that {i1, i2, . . . , ih} = {1, 2, . . . , h}, we show that [X1, X2, . . . , Xh] is a minimum

h-partition of (X, fX). Suppose the contrary, i.e., there exists a h-partition [Y1, Y2, . . . , Yh] of

(X, fX) such that fX(Y1, Y2, . . . , Yh) < fX(X1, X2, . . . , Xh). In this case, we obtain

h
∑

i=1

f(Yi) +

k
∑

i=h+1

f(Xi) =

h
∑

i=1

fX(Yi) +

k
∑

i=h+1

f(Xi) <

h
∑

i=1

fX(Xi) +

k
∑

i=h+1

f(Xi) =

k
∑

i=1

f(Xi).

Since [Y1, . . . , Yh, Xh+1, . . . , Xk] is a k-partition of (V, f), this inequality contradicts the definition

of [X1, X2, . . . , Xk].

Theorem 4. Let P = [X1, X2] and Pk = [Y1, Y2, . . . , Yk] be 2- and k-partitions of a submodular

system (V, f), respectively. Let Zij denote Xi ∩ Yj for each i ∈ {1, 2} and j ∈ {1, 2, . . . , k}. If

some pair of i ∈ {1, 2} and j ∈ {1, 2, . . . , k} satisfies Zi′j′ 6= ∅ for all i′ 6= i and j′ 6= j, and

f(Zij , Zij) ≥ f(P ), then

P ′
k = [Y1 \Xi, . . . , Yj−1 \Xi, Xi ∪ Yj , Yj+1 \Xi, . . . , Yk \Xi]

is a k-partition of (V, f) that satisfies f(P ′
k) ≤ f(Pk).
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Proof. Assume that i = j = 1. It is obvious from the assumption that P ′
k is a k-partition of (V, f).

Hence in the following, let us prove f(P ′
k) ≤ f(Pk).

By the submodularity of f , it holds that

f(Y1) + f(X1) ≥ f(Y1 ∩X1) + f(Y1 ∪X1) = f(Z11) + f(Y1 ∪X1). (1)

Similarly it follows that

f(X2) +
k

∑

h=2

f(Yh) ≥ f(Y2 ∩X2) + f(Y2 ∪X2) +
k

∑

h=3

f(Yh)

≥ f(Y2 ∩X2) + f((Y2 ∪X2) ∩ Y3) + f(Y2 ∪ Y3 ∪X2) +

k
∑

h=4

f(Yh)

= f(Y2 ∩X2) + f(Y3 ∩X2) + f(Y2 ∪ Y3 ∪X2) +

k
∑

h=4

f(Yh)

≥ · · ·

≥
k

∑

h=2

f(Yh ∩X2) + f(Y2 ∪ Y3 ∪ · · · ∪ Yk ∪X2)

=
k

∑

h=2

f(Z2h) + f(Z11). (2)

Summing (1) and (2) gives

k
∑

h=1

f(Yh) + f(X1) + f(X2) ≥ f(Y1 ∪X1) +

k
∑

h=2

f(Z2h) + f(Z11) + f(Z11). (3)

Moreover, it follows from the assumption that

f(X1) + f(X2) ≤ f(Z11) + f(Z11). (4)

Therefore by (3) and (4),

f(Pk) =

k
∑

h=1

f(Yh) ≥ f(Y1 ∪X1) +

k
∑

h=2

f(Z2h) = f(P ′
k).

Theorems 3 and 4 have been already proven in [16] for hypergraphs. In particular, Theorem 4

is important because it tells that when a minimum k-partition crosses a 2-partition and they

satisfies the conditions, we can uncross them by finding another minimum k-partition.

4 Exact Algorithm for the submodular system 3-partition

problem

In this section, we show that the algorithm in [16] for the hypergraph 3-cut problem can be ex-

tended to submodular systems straightforwardly. The following theorem on structure of minimum

3-partitions is a consequence of Theorem 4.
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Theorem 5. Let P = [X1, X2] be a minimum 2-size 2-partition of a submodular system (V, f)

with |V | ≥ 7. If (V, f) has a 2-size minimum 3-partition, then it has a minimum 3-partition not

crossed by P .

Proof. Assume that (V, f) has a minimum 3-partition P3 = [Y1, Y2, Y3] which is 2-size (i.e., |Yi| ≥ 2,

i ∈ {1, 2, 3}). We prove the theorem by constructing a minimum 3-partition of (V, f) not crossed

by P .

Let Zi,j = Xi ∩ Yj for i ∈ {1, 2} and j ∈ {1, 2, 3}. For i ∈ {1, 2}, let ni denote the number of

components of P3 intersecting Xi. Without loss of generality, we suppose that n1 ≤ n2. If n1 = 1,

then P do not cross P3 because X1 ⊆ Yj holds for some j ∈ {1, 2, 3}. Hence in the following, we

consider the case where n2 ≥ n1 ≥ 2.

First, let us examine the case of n1 = 2. Without loss of generality assume that Z1,1 6= ∅,
Z1,2 6= ∅, and Z1,3 = ∅. It follows that |Z2,3| = |Y3| ≥ 2 because P3 is 2-size. Since [Z2,3, Z2,3]

is a 2-size 2-partition of (V, f), f(Z2,3, Z2,3) ≥ f(P ) holds by the definition of P . Theorem 4

then implies that [Z1,1, Z1,2, X2 ∪ Y3] is also a minimum 3-partition of (V, f). Observe that this

3-partition is not crossed by P since X2 ⊆ X2 ∪ Y3.

Next, let us examine the remaining case, i.e., n1 = n2 = 3. For all i ∈ {1, 2} and j ∈ {1, 2, 3},
Zi,j 6= ∅ holds in this case. Since |V | ≥ 7, some i ∈ {1, 2} and j ∈ {1, 2, 3} satisfy |Zi,j | ≥ 2.

Let |Z1,1| ≥ 2 for example. Then [Z1,1, Z1,1] is a 2-size 2-partition. Hence by the definition of

P , f(Z1,1, Z1,1) ≥ f(P ) holds. Theorem 4 implies that [X1 ∪ Y1, Z2,2, Z2,3] is also a minimum

3-partition of (V, f). Observe that this 3-partition is not crossed by P since X1 ⊆ X1 ∪ Y1.

Theorem 5 tells us that at least one of the following cases holds:

(i) |V | ≤ 6;

(ii) There exists a minimum 3-partition which is not 2-size, i.e., [{v}, V1, V2] with some v ∈ V ,

and V1, V2 ⊆ V \ {v};

(iii) For any minimum 2-size 2-partition, there exists a minimum 3-partition not crossed by it.

Let us see how to compute a solution in each case. In the case of (i), it is possible to compute

an optimal solution in constant time. In the case of (ii), by Theorem 3, [V1, V2] is a minimum

2-partition of the subsystem (V \{v}, fV \{v}). Hence it is possible to compute an optimal solution

by computing a minimum 2-partition for the subsystem induced by V \ {v} with every v ∈ V ,

Let us discuss the case of (iii). For computing a minimum 2-size 2-partition, the algorithm

presented by Vazirani and Yannakakis [15] can be used. Their algorithm enumerates all the 2-

partitions in the order of non-decreasing costs and with the delay between two successive outputs

at most O(n) minimum (s, t)-partition computations. Since the number of 2-partitions not being

2-size is n, we need to compute at most n + 1 outputs to obtain a minimum 2-size 2-partition.

Hence we can find a minimum 2-size 2-partition by computing minimum (s, t)-partition O(n2)

times.

Let P = [X1, X2] be a minimum 2-size 2-partition computed as above. Since a 3-partition not

crossed by P has a corresponding 3-partition in either (VX1
, fX1

) or (VX2
, fX2

). Hence by solving

the problem recursively for these two systems, we can find an optimal solution for the original

system.

The entire of the algorithm is described as follows. For a set P of partitions, we let minP
return a partition of minimum cost in P .
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Algorithm Min3Pt(V ,f)

Input: A submodular system (V, f)

Output: A 3-partition of (V, f)

Step 1: Initialize the solution S with an arbitrary 3-partition of (V, f).

Step 2: If |V | ≤ 6, then enumerate all 3-partitions of V , and terminate with outputting a mini-

mum 3-partition among them.

Step 3: For every v ∈ V , compute a minimum 2-partition [V1, V2] of (V \ {v}, fV \{v}) and S ←
min{S, [{v}, V1, V2]}.

Step 4: Compute a minimum 2-size 2-partition [X1, X2] of (V, f). Then terminate with out-

putting min{S, Min3Pt(VX1
, fX1

), Min3Pt(VX2
, fX2

)}.

Theorem 6. Algorithm Min3Pt computes a minimum 3-partition of a submodular system by

computing minimum (s, t)-partitions O(n3) times.

Proof. Let x = |X1|. Since [X1, X2] is 2-size, 2 ≤ x ≤ n − 2. Moreover, |VX1
| = n − x + 1 and

|VX2
| = x + 1. Define D(n) as the number of (s, t)-partition computations used in Min3Pt(V, f)

when |V | = n. We have already seen that all operations except executing Min3Pt(VX1
, fX1

) and

Min3Pt(VX2
, fX2

) can be done in O(n2) (s, t)-partition computations. Hence we have

D(n) ≤ D(n− x + 1) + D(x + 1) + O(n2).

It is easy to see that D(n) = O(n3) satisfies this inequality.

5 Approximation algorithm for 4-partition problem

5.1 Submodular system 4-partition problem

In this section, we consider the submodular 4-partition problem with non-negative submodular

functions. As a consequence of Theorem 4, we obtain the following theorem.

Theorem 7. Let P = [X1, X2] be a minimum 3-size 2-partition of a submodular system (V, f)

with |V | ≥ 17. Then (V, f) has a minimum 4-partition P4 = [Y1, Y2, Y3, Y4] satisfying one of the

following conditions up to changing indices of components in P and P4:

(i) P4 is not 3-size;

(ii) Y1 ∪ Y2 = X1 and Y3 ∪ Y4 = X2;

(iii) 1 ≤ |X1 ∩ Y1| ≤ |X1 ∩ Y2| ≤ 2, X1 ∩ Y3 = X1 ∩ Y4 = ∅, and X2 ∩ Yj 6= ∅ for j ∈ {1, 2, 3, 4};

(iv) P does not cross P4.

Proof. Assuming no minimum 4-partition satisfies (i), (ii) and (iii), we construct a minimum 4-

partition satisfying (iv). Let P4 = [Y1, Y2, Y3, Y4] be an arbitrary minimum 4-partition of (V, f).

Since it does not satisfy (i), P4 is 3-size (i.e., |Yi| ≥ 3 for i ∈ {1, 2, 3, 4}). Let ni denote the number

of components of P4 intersecting with Xi for i ∈ {1, 2}, and we assume without loss of generality
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that n1 ≤ n2. If n1 = 1, then P does not cross P4 because X1 ⊆ Yj holds for some j ∈ {1, 2, 3, 4}.
Moreover if n1 = n2 = 2, then the second condition holds. Hence in the following, we consider the

case where n1 ≥ 2 and n2 ≥ 3. We denote Xi ∩ Yj by Zi,j for i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.
First, let us consider the case of n1 = 2 and n2 ≥ 3. Assume without loss of generality that

X1 ⊆ Y1 ∪Y2 (i.e., Z1,3 = Z1,4 = ∅). Since Y3 6= ∅ and Y4 6= ∅, it holds that Z2,3 6= ∅ and Z2,4 6= ∅.
If Z2,1 = ∅, then |Z1,1| = |Y1| ≥ 3 holds because P4 is 3-size, and Z2,2 6= ∅ follows because n2 ≥ 3.

Since [Z1,1, Z1,1] is a 3-size 2-partition of (V, f) in this case, f(Z1,1, Z1,1) ≥ f(P ) by the definition

of P . Hence Theorem 4 implies that [X1 ∪ Z2,1, Z2,2, Z2,3, Z2,4] is also a minimum 4-partition of

(V, f) if Z2,1 = ∅. Notice that P does not cross this 4-partition since X1 ⊆ X1 ∪Z2,1. Similarly if

Z2,2 = ∅, then [Z2,1, X1 ∪ Z2,2, Z2,3, Z2,4] is a minimum 4-partition not crossed by P .

Let Z2,1 6= ∅ and Z2,2 6= ∅. Since P4 does not satisfy (iii), |Z1,1| ≥ 3 or |Z1,2| ≥ 3 holds. Suppose

that |Z1,1| ≥ 3. Then [Z1,1, Z1,1] is a 3-size 2-partition of (V, f), and hence f(Z1,1, Z1,1) ≥ f(P )

holds by the definition of P . Theorem 4 implies that [X1∪Z2,1, Z2,2, Z2,3, Z2,4] is also a minimum

4-partition of (V, f). Notice that P does not cross this 4-partition since X1 ⊆ X1∪Z2,1. Similarly

if |Z1,2| ≥ 3, then [Z2,1, X1 ∪ Z2,2, Z2,3, Z2,4] is a minimum 4-partition not crossed by P .

Next, let us consider the case of n2 ≥ n1 = 3. We assume without loss of generality that

Z1,1 = ∅ and Z1,j 6= ∅ for j ∈ {2, 3, 4}. Since P4 is 3-size, |Z2,1| = |Y1| ≥ 3. Hence [Z2,1, Z2,1] is

a 3-size 2-partition of (V, f), and f(Z2,1, Z2,1) ≥ f(P ) follows by the definition of P . Theorem 4

then implies that [X2 ∪ Z1,1, Z1,2, Z1,3, Z1,4] is also a minimum 4-partition of (V, f). Notice that

P does not cross this 4-partition since X2 ⊆ X2 ∪ Z1,1.

In the last, let us consider the case of n1 = n2 = 4, i.e., Zi,j 6= ∅ holds for all i ∈ {1, 2} and j ∈
{1, 2, 3, 4}. Since |V | ≥ 17, |Zi,j | ≥ 3 holds for some i ∈ {1, 2} and j ∈ {1, 2, 3, 4}. Assume without

loss of generality that |Z1,1| ≥ 3. Then [Z1,1, Z1,1] is a 3-size 2-partition, and f(Z1,1, Z1,1) ≥ f(P )

holds by the definition of P . Theorem 4 then implies that [X1 ∪ Z2,1, Z2,2, Z2,3, Z2,4] is also a

minimum 4-partition of (V, f). Notice that P does not cross this 4-partition since X1 ⊆ X1 ∪
Z2,1.

Now we give our algorithm. When |V | ≤ 16, it is possible to compute an optimal solution in

constant time. When |V | ≥ 17, Theorem 7 shows that there exists an optimal solution satisfying

one of the four conditions with a minimum 3-size 2-partition P . If (i) or (ii) is satisfied, then it is

possible to compute an optimal solution in polynomial time. If (iii) is satisfied, then it is possible

to compute a 1.5-approximate solution in polynomial time, or to apply our algorithm recursively.

If (iv) is satisfied, then it is possible to apply our algorithm recursively. We prove these facts from

now on.

Before that, let us mention that a minimum 3-size 2-partition is computable as computing

a minimum 2-size 2-partition in Section 4. Since the number of 2-partitions not being 3-size is

O(n2), it suffices to compute a minimum (s, t)-partition O(n3) times.

First, let us examine the case where (i) is satisfied, i.e., there exists a minimum 4-partition

[U, V1, V2, V3] with U ⊆ V , 1 ≤ |U | ≤ 2, and V1, V2, V3 ⊆ V \ U . By Theorem 3, [V1, V2, V3] is

a minimum 3-partition of the subsystem induced by V \ U . Such a 3-partition can be found in

O(n3) (s, t)-partition computations by using Algorithm Min3Pt in Section 4. By executing this

for every U ⊆ V with 1 ≤ |U | ≤ 2, it is possible to compute an optimal solution in this case. The

number of (s, t)-partition computations is O(n5).

Next, let us consider the case where (ii) is satisfied. Now we can obtain P = [X1, X2] as stated

above. By Theorem 3, [Y1, Y2] is a minimum 2-partition of the subsystem (X1, f
X1), and [Y3, Y4]
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is a minimum 2-partition of the subsystem (X2, f
X2). Hence an optimal solution can be found by

computing minimum 2-partitions twice, which needs O(n) minimum (s, t)-partition computations.

When (iv) is satisfied, we can recursively apply our algorithm to (VX1
, fX1

) and (VX2
, fX2

).

Hence the remaining case is when (iii) is satisfied. We here suppose that the other three conditions

are not satisfied. In contrast with the cases above, we do not know how to compute an optimal

solution. However, we can compute a 1.5-approximate solution in this case, or find a 2-size 2-

partition not crossing an optimal solution. For proving this fact, we present several lemmas. We

use the notations in the proof of Theorem 7.

Lemma 1. Suppose that P and P4 in Theorem 7 satisfy (iii). Then,

f(Z1,1) + f(Z1,2) + f(X2) ≤ f(P4).

Proof. It follows from the submodularity and non-negativity of f that

f(P4) ≥ f(Y1) + f(Y2) + f(Y3 ∪ Y4). (5)

Since P4 is 3-size, a 2-partition [Y1 ∪ Y2, Y3 ∪ Y4] is 3-size. Thus f(P ) ≤ f(Y1 ∪ Y2, Y3 ∪ Y4) holds

by the definition of P . Recall that Z1,1 6= ∅, Z1,2 6= ∅, and Y3 ∪ Y4 = Z2,3 ∪ Z2,4 now. Hence by

Theorem 4,

f(Y1) + f(Y2) + f(Y3 ∪ Y4) ≥ f(Z1,1) + f(Z1,2) + f(X2) (6)

holds. (5) and (6) give the required inequality.

Lemma 2. Suppose that P and P4 of Theorem 7 satisfy (iii). Moreover, suppose that P crosses

any minimum 4-partition of (V, f). Then,

f(Z1,1, Z1,2) < 2f(X1) + f(X2).

Proof. If f(Z1,1, Z1,1) ≥ f(X1, X2), then [X1 ∪ Y1, Z2,2, Z2,3, Z2,4] is a minimum 4-partition of

(V, f) by Theorem 4. Notice that P does not cross this 4-partition, contradicting to the assump-

tion. Hence f(X1, X2) > f(Z1,1, Z1,1) holds. Similarly, f(X1, X2) > f(Z1,2, Z1,2) also holds.

Summing these gives

2f(X1, X2) > f(Z1,1, Z1,1) + f(Z1,2, Z1,2). (7)

By the submodularity and non-negativity of f ,

f(Z1,1) + f(Z1,2) ≥ f(Z1,1 ∪ Z1,2) + f(Z1,1 ∩ Z1,2) = f(V ) + f(X2) ≥ f(X2).

Thus the required inequality is proven.

From Lemmas 1 and 2, we can derive the following.

Lemma 3. Suppose that P and P4 in Theorem 7 satisfy (iii), and that P crosses any minimum

4-partition of (V, f). Moreover, assume that there exists a minimum 2-partition of (X1, f
X1)

different from [Z1,1, Z1,2]. Then a minimum 3-partition [R1, R2, R3] of (X1, f
X1) satisfies

f(X2, R1, R2, R3) ≤ 1.5f(P4).

10



Proof. Let [A, B] be a minimum 2-partition of (X1, f
X1) different from [Z1,1, Z1,2]. By the defini-

tion,

f(Z1,1, Z1,2) ≥ f(A, B)

holds. By Lemma 1,

f(P4) ≥ f(Z1,1, Z1,2, X2)

also holds. Hence

f(P4) + f(Z1,1) + f(Z1,2) ≥ f(Z1,1, Z1,2, X2) + f(A, B). (8)

Notice that Z1,1 ∪Z1,2 ∪A = X1 and Z1,1 ∩ (Z1,2 ∪A) = Z1,1 ∩A. By the submodularity of f ,

f(Z1,1) + f(Z1,2) + f(A) ≥ f(Z1,1) + f(Z1,2 ∪A) + f(Z1,2 ∩A)

≥ f(X1) + f(Z1,1 ∩A) + f(Z1,2 ∩A).

Hence we obtain

f(Z1,1, Z1,2, X2) + f(A, B) ≥ f(X1) + f(Z1,1 ∩A) + f(Z1,2 ∩A) + f(X2) + f(B). (9)

Since [A, B] and [Z1,1, Z1,2] are different, we can assume without loss of generality that A ∩
Z1,1 6= ∅ and A ∩ Z1,2 6= ∅. Then [Z1,1 ∩ A, Z1,2 ∩ A, B] is a 3-partition of (X1, f

X1). By the

definition of [R1, R2, R3],

f(Z1,1 ∩A) + f(Z1,2 ∩A) + f(B) ≥ f(R1, R2, R3) (10)

holds. From (8), (9) and (10), we obtain

f(P4) + f(Z1,1) + f(Z1,2)− f(X1) ≥ f(X2) + f(R1, R2, R3). (11)

On the other hand, Lemmas 1 and 2 show that

f(Z1,1) + f(Z1,2)− f(X1) ≤ min{f(P4)− f(X1)− f(X2), f(X1) + f(X2)}.

The maximum of the right-hand side of this inequality is 0.5f(P4), which is achieved by f(X1) +

f(X2) = 0.5f(P4). This and (11) give the required inequality.

Let [A, B] and [R1, R2, R3] be minimum 2- and 3-partitions of (X1, f
X1) respectively. We

suppose that |A| ≥ |B|. Notice that |A| ≥ 2 because |X1| ≥ 3. Lemma 3 tells that, when only

the third condition of Theorem 7 is satisfied, A = Z1,1, A = Z1,2, or [R1, R2, R3, X2] is a 1.5-

approximate solution. If A = Z1,1 or A = Z1,2, then shrinking A preserves P4 because [A, A]

does not cross P4. Hence in this case, we can either find a 1.5-approximate solution or apply the

algorithm recursively to (VA, fA).

We describe the entire of our algorithm below.

Algorithm Min4Pt(V ,f)

Input: A submodular system (V, f)

Output: A 4-partition of (V, f)

Step 1: Initialize the solution S with an arbitrary 4-partition of (V, f).
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Step 2: If |V | ≤ 16, then enumerate all 4-partitions of V , and terminate with outputting a

minimum 4-partition among them.

Step 3: For every U ⊆ V with 1 ≤ |U | ≤ 2, compute a minimum 3-partition {V1, V2, V3} of

(V \ U, fV \U ) by using Algorithm Min3Pt, and S ← min{S, [U, V1, V2, V3]}. (This step is

for (i) and (iii).)

Step 4: Compute a minimum 3-size 2-partition [X1, X2] of (V, f) such that |X1| ≤ |X2|.

Step 5: Compute a minimum 2-partition [Q1, Q2] of (X1, f
X1) and a minimum 2-partition [Q3, Q4]

of (X2, f
X2). Then S ← min{S, [Q1, Q2, Q3, Q4]}. (This step is for (ii).)

Step 6: If |X1| ≥ 5, then set S ← min{S,Min4Pt(VX1
, fX1

),Min4Pt(VX2
, fX2

)}. (This step is

for (iv).)

Step 7: If |X1| ≤ 4, then compute a minimum 2-partition [A, B] with |A| ≥ |B|, and set S ←
min{S,Min4Pt(VA, fA),Min4Pt(VX2

, fX2
)}. (This step is for (iii) and (iv).)

Step 8: Terminate with outputting S.

Theorem 8. Algorithm Min4Pt computes a 1.5-approximate solution of the submodular system

4-partition problem by computing minimum (s, t)-partitions O(n6) times.

Proof. First, let us prove the 1.5-approximability of the algorithm by the induction on n. When

|V | ≤ 16, Step 2 of the algorithm computes an optimal solution. Below, we examine the cases

where the conditions discussed in Theorem 7 are satisfied by the minimum 3-size 2-partition

[X1, X2] computed in the algorithm and some minimum 4-partition. When (i) of Theorem 7 is

satisfied, Steps 3 of the algorithm finds an optimal solution as we have already seen. When (ii)

of Theorem 7 is satisfied, Step 5 of the algorithm finds an optimal solution. Then the remaining

case is when (iii) or (iv) of Theorem 8 holds.

Consider the case where (iv) of Theorem 7 is satisfied. In this case, shrinking X1 or X2 preserves

an optimal solution. Hence when |X5| ≥ 5, Min4Pt(VX1
, fX1

) or Min4Pt(VX2
, fX2

) in Step 6

of the algorithm returns a 1.5-approximate solution by the inductive hypothesis. When |X5| ≤
4, Min4Pt(VA, fA) or Min4Pt(VX2

, fX2
) in Step 7 of the algorithm returns a 1.5-approximate

solution by the inductive hypothesis (Notice that A ⊆ X1).

Consider the case where (iii) of Theorem 7 is satisfied. In this case, |X1| ≤ 4 holds. Lemma 3

implies that A = Z1,1, A = Z1,2, or [R1, R2, R3, X2] is a 1.5-approximate solution where [R1, R2, R3]

is a minimum 3-partition of (X1, f
X1). If A = Z1,1 or A = Z1,2 holds, then Min4Pt(VA, fA) re-

turns a 1.5-approximate solution by the inductive hypothesis. Otherwise, Step 3 computes a

1.5-approximate solution since each of Ri, i = 1, 2, 3 contains at most two elements.

Next, let us consider the number of computing minimum (s, t)-partitions. Let x = |X1|. Since

[X1, X2] is 3-size, 3 ≤ x ≤ n − 3. Moreover, |VX1
| = n − x + 1 and |VX2

| = x + 1 hold. Define

D(n) as the number of (s, t)-partition computations by the algorithm. By the discussion above,

all operations in Steps 1 to 6 can be done by O(n5) (s, t)-computations. If |X1| ≥ 5, then the

algorithm executes the operations in Step 6. In this case, we have

D(n) ≤ D(x + 1) + D(n− x + 1) + O(n5). (12)
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If |X1| ≤ 4, then the algorithm executes the operations in Step 7 instead of those in Step 6. In

this case, we have

D(n) ≤ D(x + 1) + D(n− |B1|+ 1) + O(n5) ≤ D(5) + D(n− 1) + O(n5). (13)

It is easy to verify that D(n) = O(n6) satisfies both of (12) and (13).

5.2 Hypergraph 4-cut problem

In this section, we consider the hypergraph 4-cut problem. Since this problem is contained by the

submodular system 4-partition problem as seen in Theorem 2, theorems in Section 5.1 hold and

Algorithm Min4Pt works with the same approximation factor. In what follows, we show that

Algorithm Min4Pt achieves better approximation factor for this problem.

Lemma 4. Assume that the submodular system (V, f) is constructed from a hypergraph G = (V, E)

with weight w : E → ℜ+ as described in Section 2.2, and that P and P4 in Theorem 7 satisfy (iii).

If P crosses any minimum 4-partition of (V, f), then

we(Z1,1, Z1,2) < min{we(Z1,1, X2), we(Z1,2, X2)}.

Proof. We assume without loss of generality that we(Z1,2, X2) ≤ we(Z1,1, X2). Notice that all

of Z1,1, Z2,2, Z2,3 and Z2,4 are non-empty in this case. Hence by Theorem 4, if w(Z1,1, Z1,1) ≥
w(X1, X2), then [X1 ∪ Y1, Z2,2, Z2,3, Z2,4] is a minimum 4-partition of (V, f). Notice that P does

not cross this 4-partition, contradicting to the assumption. Hence,

w(Z1,1, Z1,1) < w(X1, X2)

holds. Since Z1,1 = X2 ∪ Z1,2 and X2 ∩ Z1,2 = ∅, we have

w(Z1,1, Z1,1) = w(Z1,1, X2) + we(Z1,1, Z1,2).

Similarly, since X1 = Z1,1 ∪ Z1,2 and Z1,1 ∩ Z1,2 = ∅, we have

w(X1, X2) = w(Z1,1, X2) + we(Z1,2, X2).

From these, we(Z1,1, Z1,2) < we(Z1,2, X2) follows.

Lemma 5. Assume that the submodular system (V, f) is constructed from a hypergraph G = (V, E)

with weight w : E → ℜ+ as described in Section 2.2, and that P and P4 in Theorem 7 satisfy (iii).

Moreover, suppose that P crosses any minimum 4-partition, and that there exists a minimum 2-

partition of GX1 different from [Z1,1, Z1,2]. Then a minimum 3-partition [R1, R2, R3] of (X1, f
X1)

satisfies

w(R1, R2, R3, X2) ≤
4

3
f(P4).

Proof. By the submodularity of f ,

f(P4) ≥ w(Y1, Y2, Y3 ∪ Y4) (14)

holds. Let [A, B] be a minimum 2-partition of G(X1), where we suppose that |A| ≥ |B|. By the

assumption, A ∩ Z1,1 6= ∅ and A ∩ Z1,2 6= ∅. Since P4 is 3-size, a 2-partition [Y1 ∪ Y2, Y3 ∪ Y4] is
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3-size, and by the definition of P , w(P ) ≥ w(Y1 ∪ Y2, Y3 ∪ Y4) holds. Recall that Z1,3 ∪ Z1,4 = ∅.
Hence by Theorem 4, it holds that

w(Y1, Y2, Y3 ∪ Y4) ≥ w(Z1,1, Z1,2, X2). (15)

Since δ(Z1,1, Z1,2, X2) ⊇ δe(Z1,1, Z1,2)∪δe(Z1,1, X2)∪δe(Z1,2, X2), and all of δe(Z1,1, Z1,2), δe(Z1,1, X2)

and δe(Z1,2, X2) are disjoint, we have

w(Z1,1, Z1,2, X2) ≥ we(Z1,1, Z12) + we(Z1,1, X2) + we(Z1,2, X2). (16)

By Lemma 4,

we(Z1,1, Z1,2) + we(Z1,1, X2) + we(Z1,2, X2) ≥ 3we(Z1,1, Z1,2). (17)

From (14), (15), (16), and (17), it follows that

we(Z1,1, Z1,2) <
1

3
f(P4). (18)

On the other hand, w(R1, R2, R3, X2) = we(R1, R2, R3)+w(X1, X2) because δ(R1, R2, R3, X2) =

δe(R1, R2, R3) ∪ δ(X1, X2) and δe(R1, R2, R3) ∩ δ(X1, X2) = ∅. Moreover, we(R1, R2, R3) ≤
we(A ∩ Z1,1, A ∩ Z1,2, B) by the definition of [R1, R2, R3]. Hence

w(R1, R2, R3, X2) ≤ we(A ∩ Z1,1, A ∩ Z1,2, B) + w(X1, X2). (19)

Since δe(A∩Z1,1, A∩Z1,2, B) = δe(A∩Z1,1, A∩Z1,2)∪δe(A, B) and δe(A∩Z1,1, A∩Z1,2)∩δe(A, B) =

∅, it holds that

we(A ∩ Z1,1, A ∩ Z1,2, B) = we(A ∩ Z1,1, A ∩ Z1,2) + we(A, B). (20)

Since δe(A ∩ Z1,1, A ∩ Z1,2) ⊆ δe(Z1,1, Z1,2),

we(A ∩ Z1,1, A ∩ Z1,2) ≤ we(Z1,1, Z1,2) (21)

holds. By combining (19), (20) and (21), we have

w(R1, R2, R3, X2) ≤ we(Z1,1, Z1,2) + we(A, B) + w(X1, X2). (22)

Notice that we(Z1,1, Z1,2) + w(X1, X2) = w(Z1,1, Z1,2, X2) because Z1,1 ∪ Z1,2 = X1 and

Z1,1 ∩ Z1,2 = ∅. Hence with (14) and (15), it shows that

we(Z1,1, Z1,2) + w(X1, X2) ≤ f(P4). (23)

Moreover, we(A, B) ≤ we(Z1,1, Z1,2) holds by the definition of [A, B]. This and (18) show that

we(A, B) ≤ 1

3
f(P4). (24)

(22), (23) and (24) give the required inequality.

By replacing Lemma 3 with Lemma 5, we have the following.

Theorem 9. Algorithm Min4Pt achieves approximation factor 4/3 for the hypergraph 4-cut

problem.
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6 Approximation algorithm for k-partition problem

6.1 Submodular system k-partition problem

In this section, we consider the submodular system k-partition problem with an arbitrary fixed

k ≥ 5. As a consequence of Theorem 4, we obtain the following theorem.

Theorem 10. Let P = [X1, X2] be a minimum h-size 2-partition of a submodular system (V, f)

with |V | > 2k(h − 1). For i ∈ {1, 2} and some k-partition Pk of (V, f), let ni denote the

number of components of Pk intersecting Xi. For any P , there exists a minimum k-partition

Pk = [Y1, Y2, . . . , Yk] of (V, f) satisfying one of the following conditions up to changing indices of

components in P and Pk:

(i) Pk is not h-size;

(ii) Pk is not crossed by P ;

(iii) No minimum k-partition of (V, f) satisfies (i) and (ii), 2 ≤ n1 ≤ k− 2, and 2 ≤ n2 ≤ k− 2;

(iv) No minimum k-partition of (V, f) satisfies (i) and (ii), 2 ≤ n1 ≤ k − 2, n2 = k, and

|X1 ∩ Yj | < h for j ∈ {1, 2, . . . , k}.

Proof. Assuming that no minimum k-partition of (V, f) satisfies any of (i), (iii) and (iv), we

construct a minimum k-partition of (V, f) satisfying (ii). Let Pk = [Y1, Y2, . . . , Yk] be an arbitrary

minimum k-partition of (V, f). Since it does not satisfy (i), Pk is h-size (i.e., |Yj | ≥ h for j ∈
{1, 2, . . . , k}). We assume without loss of generality that n1 ≤ n2. Note that n1 ≥ 2 holds because

Pk is not crossed by P . We denote Xi ∩ Yj by Zi,j for i ∈ {1, 2} and j ∈ {1, 2, . . . , k}.
First, let us consider the case where n1 = n2 = k, i.e., Zi,j 6= ∅ for every i ∈ {1, 2} and

j ∈ {1, 2, . . . , k}. Since |V | > 2k(h− 1), some pair of i and j satisfies |Zi,j | ≥ h. Then [Zi,j , Zi,j ]

is a h-size 2-partition of (V, f). Hence by the definition of P , it holds that f(Zi,j, Zi,j) ≥ f(P ).

By these facts and Theorem 4, we can construct another minimum k-partition of (V, f) that is

not crossed by P in this case.

Next, consider the case where n1 = k − 1. Without loss of generality, Z1,j 6= ∅ for j ∈
{1, 2, . . . , k − 1} and Z1,k = ∅. Then Z2,k = Yk. Since Pk is h-size, |Z2,k| = |Yk| ≥ h. This

implies that [Z2,k, Z2,k] is a h-size 2-partition of (V, f). Hence by the definition of P , it holds

that f(Z2,k, Z2,k) ≥ f(P ). By these facts and Theorem 4, we can construct another minimum

k-partition of (V, f) that is not crossed by P in this case.

Next, consider the case where n1 ≤ k−2 and n2 = k. Since Pk does not satisfy (iv), |Z1,j| ≥ h

for some j ∈ {1, 2, . . . , k} in this case. That is to say, [Z1,j, Z1,j ] is a h-size 2-partition of (V, f).

Hence by the definition of P , it holds that f(Z1,j, Z1,j) ≥ f(P ). Recall that Z2,j 6= ∅ for every

j ∈ {1, 2, . . . , k} because n2 = k. By these facts and Theorem 4, we can construct another

minimum k-partition of (V, f) that is not crossed by P in this case.

The remaining case is when n1 ≤ k−2 and n2 = k−1 since (iii) is not satisfied. By n2 = k−1,

we can assume without loss of generality that Z2,1 = ∅ and Z2,j 6= ∅ for j ≥ 2. It follows that

Z1,1 = Y1 from Z2,1 = ∅. Since Pk is h-size, |Z1,1| = |Y1| ≥ h. This implies that [Z1,1, Z1,1] is a

h-size 2-partition of (V, f). Hence by the definition of P , it holds that f(Z1,1, Z1,1) ≥ f(P ). By

these facts and Theorem 4, we can construct another minimum k-partition of (V, f) that is not

crossed by P in this case.
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Now we present our algorithm. We choose 2k − 3 as h in Theorem 10. If |V | ≤ 2k(h − 1) =

4k(k−2), we compute a minimum k-partition by enumerating all k-partitions. The computational

time for this is O(|V |k) = O(22kkk(k − 2)k).

Note that a minimum h-size 2-partition P can be found by computing minimum (s, t)-partitions

O(nh) times as explained for h = 2 in Section 5.1. Below we examine the case where some

condition in Theorem 10 holds. We let αk denote the approximation factor for the submodular

system k-partition problem. In the rest of this section, we use the notations defined in the proof

of Theorem 10.

Let us consider the case where (i) of Theorem 10 is satisfied. In this case, a minimum k-

partition is [U, V1, V2, . . . , Vk−1] with some U ⊆ V , 1 ≤ |U | < h, and V1, V2, . . . , Vk−1 ⊆ V \U . By

Theorem 3, [V1, V2, . . . , Vk−1] is a minimum (k − 1)-partition of the subsystem induced by V \ U .

Notice that the number of subsets U of V with 1 ≤ |U | < h is O(nh−1). Thus in this case, we can

compute an αk−1-approximate solution by applying the algorithm for (k − 1)-partition problem

O(nh−1) = O(n2k−4) times.

Next, let us discuss the case where (ii) of Theorem 10 is satisfied. In this case, shrinking X1 or

X2 preserves the minimum k-partition Pk of (V, f). Hence we can obtain an approximate solution

by applying the algorithm recursively to smaller instances.

Next, let us discuss the case where (iii) of Theorem 10 is satisfied. Recall that at least one of

Z1,j 6= ∅ and Z2,j 6= ∅ holds for any j ∈ {1, 2, . . . , k}, and hence n1 + n2 ≥ k. For k−n2 ≤ ℓ ≤ n1,

define P 1
ℓ and P 2

k−ℓ as a minimum ℓ-partition of (X1, f
X1) and a minimum (k − ℓ)-partition of

(X2, f
X2), respectively. We show that both of f(P 1

ℓ ) and f(P 2
k−ℓ) are at most f(Pk) for any ℓ.

For this, we need the following preparatory lemma.

Lemma 6. Suppose that P and Pk in Theorem 10 satisfy either (iii) or (iv). Moreover, let

Z1,j 6= ∅ for j ∈ {1, 2, . . . , n1}. Then,

f(Z1,1, Z1,2, . . . , Z1,n1
, X2) ≤ f(Pk).

Proof. By the submodularity of f ,

f(Pk) ≥ f(Y1, Y2, . . . , Yn1
,∪k

j=n1+1Yj) (25)

holds. Since ∪k
j=n1+1Z2,j = ∪k

j=n1+1Yj ≥ (k − n1)h > h, [∪k
j=n1+1Z2,j ,∪k

j=n1+1Z2,j] is a h-size

2-partition of (V, f). Hence f(∪k
j=n1+1Z2,j ,∪k

j=n1+1Z2,j) ≥ f(P ) holds by the definition of P .

Recall that we are assuming Z1,j 6= ∅ for j ∈ {1, 2, . . . , n1}. By these facts and Theorem 4,

f(Y1, Y2, . . . , Yn1
,∪k

j=n1+1Yj) ≥ f(Z1,1, Z1,2, . . . , Z1,n1
, X2) (26)

holds. Combining (25) and (26) proves the required inequality.

Lemma 7. Suppose that P and Pk in Theorem 10 satisfy (iii). Then a minimum ℓ-partition

P 1
ℓ of (X1, f

X1) with ℓ ≤ n1 satisfies f(P 1
ℓ ) ≤ f(Pk), and a minimum (k − ℓ)-partition P 2

k−ℓ of

(X2, f
X2) with k − ℓ ≤ n2 satisfies f(P 2

k−ℓ) ≤ f(Pk).

Proof. We here show only f(P 1
ℓ ) ≤ f(Pk) because f(P 2

k−ℓ) ≤ f(Pk) can be proven similarly.

Suppose without loss of generality that Z1,j 6= ∅ for 1 ≤ j ≤ n1 and Z1,j = ∅ for n1 + 1 ≤ j ≤ k.

Lemma 6 implies that f(X2, Z11, Z12, . . . , Z1n1
) ≤ f(Pk). By the non-negativity of f , Theorem 3,

and the definition of P 1
ℓ , it follows that

f(P 1
ℓ ) ≤ f(Z1,1, Z1,2, . . . , Z1,n1

) ≤ f(X2, Z1,1, Z1,2, . . . , Z1,n1
).
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This proves the required inequality.

Lemma 7 tells that the union of an αℓ-approximate ℓ-partition of (X1, f
X1) and an αk−ℓ-

approximate (k−ℓ)-partition of (X2, f
X2) achieves approximation factor αℓ+αk−ℓ for any k−n2 ≤

ℓ ≤ n1. Since we do not know n1 and n2 in advance, the algorithm computes such a solution for

every 2 ≤ ℓ ≤ k − 2, and outputs the best one among them. This achieves the approximation

factor at most max2≤ℓ≤⌈k/2⌉(αℓ + αk−ℓ) in this case.

In the last, let us discuss the case where (iv) of Theorem 10. Without loss of generality,

suppose that 0 < |Z1,j | < h for j ∈ {1, 2, . . . , n1} and Z1,j = ∅ for j ∈ {n1 + 1, . . . , k}. Our

algorithm enumerates 2-partitions, call [Ai, Bi], i ∈ {1, 2, . . . , p}, of (X1, f
X1) by the algorithm

due to Vazirani and Yannakakis [15] until X1 is divided into at least k − 1 subsets by all of them.

Obviously p is at most 2k−2 − 1. Let [C1, C2, . . . , Ck′ ] be the obtained k′-partition of (X1, f
X1),

where k − 1 ≤ k′ ≤ 2(k − 2).

Since |X1| ≥ h = 2(k − 2) + 1, some i ∈ {1, 2, . . . , k′} satisfies |Ci| ≥ 2. If all of [Z1,1, X1 \
Z1,1], [Z1,2, X1\Z1,2], . . . , [Z1,n1

, X1\Z1,n1
] are enumerated in the above computation, then shrink-

ing each component of [C1, C2, . . . , Ck′ ] preserves the optimal solution. Hence we can reduce the

size of the system in this case.

Let us consider the case such that some of [Z1,1, X1\Z1,1], [Z1,2, X1\Z1,2], . . . , [Z1,n1
, X1\Z1,n1

]

is not enumerated. Let [R1, R2, . . . , Rk−1] be a minimum (k − 1)-partition of (X1, f
X1). In what

follows, we prove that [R1, R2, . . . , Rk−1, X2] is a (k + 1 − 2
√

k − 1)-approximate solution in this

case. Note that such [R1, R2, . . . , Rk−1] can be computed in O(k|X1|) = O(khn1 ) = O(k(2k−3)(k−2))

time.

Without loss of generality, suppose that [Z1,1, X1 \ Z1,1] is not enumerated. Remember that

the algorithm due to Vazirani and Yannakakis [15] enumerates all 2-partitions in the order of

non-decreasing cost. Hence f(Ai, Bi) ≤ f(Z1,1, X1 \Z1,1) for every i ∈ {1, 2, . . . , p} now. We first

show that the cost of [R1, R2, . . . , Rk−1, X2] is bounded in terms of f(Z1,1, X1 \Z1,1)−f(X1), and

we then give a bound on f(Z1,1, X1 \ Z1,1)− f(X1).

Lemma 8. Suppose that P and Pk in Theorem 10 satisfy (iv), and that all of [Ai, Bi], i ∈
{1, 2, . . . , p} are different from [Z1,1, X1 \ Z1,1]. Then,

f(R1, R2, . . . , Rk−1, X2) ≤ f(Pk) + (k − 1− n1)(f(Z1,1, X1 \ Z1,1)− f(X1)).

Proof. Below we show how to construct a (k − 1)-partition P ′ of X1 such that

f(P ′) ≤ f(Z1,1, Z1,2, . . . , Z1,n1
) + (k − 1− n1)(f(Z1,1, X1 \ Z1,1)− f(X1)).

It proves the required inequality because f(R1, R2, . . . , Rk−1) ≤ f(P ′) by the definition of [R1, R2, . . . , Rk−1],

and f(Z1,1, Z1,2, . . . , Z1,n1
) ≤ f(Z1,1, Z1,2, . . . , Z1,n1

, X2) ≤ f(Pk) by the non-negativity of f and

Lemma 6.

Initially set P ′ to [Z1,1, Z1,2, . . . , Z1,n1
]. Then, for each i ∈ {1, 2, . . . , p}, we divide each C ∈ P ′

intersecting both of Ai and Bi into C ∩Ai and C ∩ Bi until P ′ becomes a (k − 1)-partition. Let

us estimate the increase of f(P ′) by the division with [Ai, Bi]. Assume that C1, C2, . . . , Cℓ(i) ∈ P ′
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are divided with [Ai, Bi]. The submodularity of f indicates that

f(C1, C2, . . . , Cℓ(i)) + ℓ(i)f(Ai, Bi) ≥
ℓ(i)
∑

j=1

{f(Cj ∩Ai) + f(Cj ∪Ai) + f(Bi)}

≥
ℓ(i)
∑

j=1

{f(Cj ∩Ai) + f(Cj ∩Bi) + f(X1)},

from which it follows that

f(C1 ∩Ai, C1 ∩Bi, . . . , Cℓ(i) ∩Ai, Cℓ(i) ∩Bi, )− f(C1, C2, . . . , Cℓ(i))

≤ ℓ(i)(f(Ai, Bi)− f(X1)) ≤ ℓ(i)(f(Z1,1, X1 \ Z1,1)− f(X1)).

Notice that f(P ′) − f(Z1,1, Z1,2, . . . , Z1,n1
) is at most the sum of this increase over all i ∈

{1, 2, . . . , p}, and
∑p

i=1 ℓ(i) = k − 1− n1. These complete the proof.

Now let us estimate f(Z1,1, X1 \ Z1,1)− f(X1).

Lemma 9. Suppose that P and Pk in Theorem 10 satisfy (iv). Then,

f(Z1,1, X1 \ Z1,1)− f(X1) ≤
n1 − 1

n1
f(Pk).

Proof. Notice that Z2,j 6= ∅ for all j ∈ {1, 2, . . . , k} now. Hence by Theorem 4, if f(Z1,j , Z1,j) ≥
f(X1, X2) for some i ∈ {1, 2, . . . , n1}, then we can obtain a minimum k-partition of (V, f) not

crossed by P , a contradiction to the assumption. Thus f(Z1,j, Z1,j) < f(X1, X2) for every j ∈
{1, 2, . . . , n1}, implying that

n1
∑

j=1

f(Z1,j , Z1,j) < n1f(X1, X2).

By the submodularity and non-negativity of f ,

n1
∑

j=1

f(Z1,j, Z1,j) ≥ (n1 − 1)f(V ) + f(X2) +

n1
∑

j=1

f(Z1,j) ≥ f(X2) +

n1
∑

j=1

f(Z1,j).

By these, we obtain

f(Z1,1, Z1,2, . . . , Z1,n1
)− f(X1) ≤ (n1 − 1)f(X1, X2). (27)

On the other hand,

f(Z1,1, Z1,2, . . . , Z1,n1
)− f(X1) ≤ f(Pk)− f(X1, X2) (28)

holds by Lemma 6.

By the submodularity,

f(Z1,1, X1 \ Z1,1) ≤ f(Z1,1, Z1,2, . . . , Z1,n1
)

holds. From this, (27), and (28), it follows that

f(Z1,1, X1 \ Z1,1)− f(X1) ≤ min{(n1 − 1)f(X1, X2), f(Pk)− f(X1, X2)}

f(X1, X2) = f(Pk)/n1 attains the maximum value of the right-hand side in the above inequality,

which presents the required bound of f(Z1,1, X1 \ Z1,1)− f(X1).
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Lemma 10. Suppose that P and Pk in Theorem 10 satisfy (iv), and that shrinking the components

of the partition [C1, C2, . . . , Ck′ ] does not preserve Pk. Then the k-partition [R1, R2, . . . , Rk−1, X2]

of (V, f) achieves the approximation factor k + 1− 2
√

k − 1.

Proof. By Lemmas 8 and 9,

f(R1, R2, . . . , Rk−1, X2) ≤
{

1 + (k − 1− n1)
n1 − 1

n1

}

f(Pk). (29)

Recall that 2 ≤ n1 ≤ k − 2. Then n1 =
√

k − 1 attains the maximum (k + 1 − 2
√

k − 1)f(Pk) of

the right-hand side in (29).

Below we describe the entire of our algorithm.

Algorithm MinkPt(k,V ,f)

Input: A submodular system (V, f) and an integer k ≥ 5

Output: A k-partition of (V, f)

Step 1: Initialize the solution S with an arbitrary k-partition of (V, f).

Step 2: If |V | ≤ 4k(k − 2), then enumerate all k-partitions of V , and terminate with outputting

minimum one among them.

Step 3: For every U ⊆ V with |U | ≤ 2k−4, compute a (k−1)-partition [V1, V2, . . . , Vk−1] of (V \
U, fV \U ) by using Algorithm MinkPt(k−1,V \U, fV \U ) and set S ← min{S, [U, V1, V2, . . . , Vk−1]}.
(This step is for (i).)

Step 4: Compute a minimum (2k − 3)-size 2-partition [X1, X2] of (V, f) such that |X1| ≤ |X2|.

Step 5: For every 2 ≤ i ≤ k−2, execute the following operations: Compute a minimum i-partition

[Q1, Q2, . . . , Qi] of (X1, f
X1) by using Algorithm MinkPt(i, X1, f

X1); Compute a minimum

(k−i)-partition [Q′
1, Q

′
2, . . . , Q

′
k−i] of (X2, f

X2) by using Algorithm MinkPt(k−i, X2, f
X2);

Set S ← min{S, [Q1, Q2, . . . , Qi, Q
′
1, Q

′
2, . . . , Q

′
k−i]}. (This step is for (iii).)

Step 6: If |X1| > 2(k − 2)2, then set S ← min{S,MinkPt(k, VX1
, fX1

),MinkPt(k, VX2
, fX2

)}.
(This step is for (ii).)

Step 7: If |X1| ≤ 2(k−2)2, then execute following operations: Enumerate 2-partitions of (X1, f
X1)

by the algorithm due to Vazirani and Yannakakis [15] until X1 is divided into at least k − 1

subsets, and let (V ′, f ′) be the system obtained by shrinking those subsets respectively;

Enumerating all (k − 1)-partitions of (X1, f
X1), and call a minimum one among them by

[R1, R2, . . . , Rk−1]; Set

S ← min{S,MinkPt(k, VX2
, fX2

),MinkPt(k, V ′, f ′), [R1, R2, . . . , Rk−1, X2]}.

(This step is for (ii) and (iv).)

Step 8: Terminate with outputting S.

Theorem 11. Algorithm MinkPt achieves the approximation factor k+1−2
√

k − 1 for the sub-

modular system k-partition problem with k ≥ 5 by computing minimum (s, t)-partitions O(nk2−2k−2)

times.
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Proof. First, let us discuss the approximation factor αk of the algorithm for the minimum k-

partition problem. When n ≤ 4k(k − 2), Step 2 of the algorithm computes an optimal solution.

Below, we examine each case where some condition of Theorem 10 are satisfied by the minimum

h-size 2-partition P = [X1, X2] and some minimum k-partition Pk = [Y1, Y2, . . . , Yk] of (V, f),

where h = 2k − 3. We show that αk satisfies

αk = max{k + 1− 2
√

k − 1, αk−1, αi + αk−i | 2 ≤ i ≤ ⌊k/2⌋} (30)

for k ≥ 5. Remember that α2 = α3 = 1 and α4 = 1.5 by Theorems 6 and 8. By the induction on

k, we can prove that the maximum in (30) is attained by k + 1− 2
√

k − 1.

Let us consider the case where (i) is satisfied. In this case, a component of Pk is some U ⊆ V

with |U | < h. The other components form a minimum (k − 1)-partition of (V \ U, fV \U ) by

Theorem 3. Algorithm MinkPt(k − 1, V \ U, fV \U ) approximates this (k − 1)-partition within a

factor of αk−1. Hence Step 3 computes an αk−1-approximate solution in this case.

Next, let us consider the case where (ii) is satisfied. In this case, shrinking X1 or X2 preserves an

optimal solution. Hence, if |X1| > 2(k − 2)2, then MinkPt(k, VX1
, fX1

) or MinkPt(k, VX2
, fX2

)

in Step 6 returns an αk-approximate solution by the induction hypothesis. Notice that (V ′, f ′),

computed in Step 7, is the system obtained by shrinking some vertices in X1. Therefore if |X1| ≤
2(k − 2)2, then MinkPt(k, VX2

, fX2
) or MinkPt(k, V ′, f ′) in Step 7 returns an αk-approximate

solution by the induction hypothesis.

Next, let us consider the case where (iii) is satisfied. In this case, the k-partition [Q1, . . . , Qi, Q
′
1, . . . , Q

′
k−i]

computed in Step 5 achieves the approximation factor αi + αk−i if n1 ≤ i ≤ k − n2 by Lemma 7.

In the last, let us consider the case where (iv) is satisfied. In this case, |X1| ≤ n1(h − 1) ≤
2(k − 2)2, i.e., the algorithm executes the operations described in Step 7. By Lemma 10, either

an optimal solution remains in (V ′, f ′) constructed in Step 7, or [R1, R2, . . . , Rk−1, X2] achieves

approximation factor k + 1 − 2
√

k − 1. In the former case, MinkPt(k, V ′, f ′) returns an αk-

approximate solution by the induction hypothesis.

By the above discussion, we have proven the approximation factor of Algorithm MinkPt.

In the rest of this proof, we analyze the number of computing the minimum (s, t)-partitions.

Let x = |X1|. Since [X1, X2] is (2k − 3)-size, 2k − 3 ≤ x ≤ n − 2k + 3. Moreover, |VX1
| =

n − x + 1, |VX2
| = x + 1 and |V ′| ≤ n − 1 hold. Define Dk(n) as the number of (s, t)-partition

computations used in the algorithm. We have already observed that all operations but executing

MinkPt(VX1
, fX1

), MinkPt(VX2
, fX2

) and MinkPt(V ′, fV ′) can be done by O(n2k−4Dk−1(n)+
∑k−2

i=2 Di(n)) minimum (s, t)-partition computations. Hence if |X1| > 2(k − 2)2, we have

Dk(n) ≤ Dk(n− x + 1) + Dk(x + 1) + O(n2k−4Dk−1(n) +

k−2
∑

i=2

Di(n)). (31)

If |X1| ≤ 2(k − 2)2, we have

Dk(n) ≤ Dk(n− 1) + Dk(2(k − 2)2 + 1) + O(n2k−4Dk−1(n) +

k−2
∑

i=2

Di(n)). (32)

Remember that D2(n) = O(n), D3(n) = O(n3) (Theorem 6), and D4(n) = O(n6) (Theorem 8).

It is easy to verify that D(n) = O(nk2−2k−2) satisfies both of (31) and (32).
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6.2 Hypergraph k-cut problem

Let α′
k be the approximation factor of Algorithm MinkPt for the hypergraph k-cut problem. In

this subsection, we present a better bound on α′
k than presented in Theorem 11 by improving

some of lemmas in the previous subsection.

Lemma 11. Assume that the submodular system (V, f) is constructed from a hypergraph G =

(V, E) with weight w : E → ℜ+ as described in Section 2.2, and that P and Pk in Theorem 10

satisfy (iii). Then a minimum ℓ-partition P 1
ℓ of (X1, f

X1) and a minimum (k− ℓ)-partition P 2
k−ℓ

of (X2, f
X2) with k − n2 ≤ ℓ ≤ n1 satisfy f(P 1

ℓ ) + f(P 2
k−ℓ) ≤ 1.5f(Pk).

Proof. Assume without loss of generality that Z1,i = ∅, i ∈ {n1+1, n1+2, . . . , k} and that Z2,i = ∅,
i ∈ {1, 2, . . . , k−n2}. Since δ(Y1, Y2, . . . , Yk) ⊇ δe(Z1,1, Z1,2, . . . , Z1,n1

)∪δe(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k)

and δe(Z1,1, Z1,2, . . . , Z1,n1
) ∩ δe(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k) = ∅, it holds that

we(Z1,1, Z1,2, . . . , Z1,n1
) + we(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k) ≤ f(Pk),

and hence

min{we(Z1,1, Z1,2, . . . , Z1,n1
), we(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k)} ≤ f(Pk)/2.

Assume that we(Z1,1, Z1,2, . . . , Z1,n1
) ≤ f(Pk)/2. By Lemma 6, f(X1, Z2,k−n2+1, . . . , Z2,k) ≤

f(Pk) holds. Hence

f(Z1,1, Z1,2, . . . , Z1,n1
) + f(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k)

= we(Z1,1, Z1,2, . . . , Z1,n1
) + f(X1, Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k) ≤ 1.5f(Pk).

Since f(P 1
ℓ ) ≤ f(Z1,1, Z1,2, . . . , Z1,n1

) and f(P 2
k−ℓ) ≤ f(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k), we have

obtained the required inequality.

Even if we(Z2,k−n2+1, Z2,k−n2+2, . . . , Z2,k) ≤ f(Pk)/2, the lemma is proven similarly.

The following is an improvement of Lemma 9.

Lemma 12. Assume that the submodular system (V, f) is constructed from a hypergraph G =

(V, E) with weight w : E → ℜ+ as described in Section 2.2, and that P and Pk in Theorem 10

satisfy (iv). Then,

f(Z1,1, X1 \ Z1,1)− f(X1) ≤







f(Pk)/3 n1 = 2,

f(Pk)/2 n1 ≥ 3.

Proof. Since f(Z1,1, X1 \ Z1,1) − f(X1) = we(Z1,1, X1 \ Z1,1) in this case, it suffices to estimate

we(Z1,1, X1 \ Z1,1).

The submodularity and non-negativity of f , and Lemma 6 imply that

f(Z1,1, X1 \ Z1,1, X2) ≤ f(Z1,1, Z1,2, . . . , Z1,n1
, X2) ≤ f(Pk). (33)

Moreover,

we(Z1,1, X1 \ Z1,1) +

n1
∑

j=1

we(Z1,j , Z2,j) ≤ f(Z1,1, X1 \ Z1,1, X2) (34)

holds because δe(Z1,1, X1 \Z1,1) and δe(Z1,j, Z2,j), j ∈ {1, 2, . . . , n1} are all disjoint and contained

in δ(Z1,1, X1 \ Z1,1, X2).
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Suppose that we(Z1,1, X1 \ Z1,1) >
∑n1

j=2 we(Z1,j , Z2,j). Then w(Y1, Y2, . . . , Yk) > w(X1 ∪
Z2,1, Z2,2, Z2,3, . . . , Z2,k) holds since w(Y1, Y2, . . . , Yk)−w(X1∪Z2,1, Z2,2, Z2,3, . . . , Z2,k) > we(Z1,1, X1\
Z1,1)−

∑n1

j=2 we(Z1,j , Z2,j). This is a contradiction, implying that

we(Z1,1, X1 \ Z1,1) ≤
n1
∑

j=2

we(Z1,j , Z2,j). (35)

Combining (33), (34), and (35) gives the required inequality for n1 ≥ 3.

Let us discuss the case where n1 = 2. By Theorem 3, [Y1, Y2] is a minimum 2-partition

of (Y1 ∪ Y2, f
Y1∪Y2). If we(Z1,1, Z1,2) > we(Z1,1, Z2,1), then we(Z1,1, Y2 ∪ Z1,1) = we(Y1, Y2) +

we(Z1,1, Z2,1)−we(Z1,1, Y2) ≤ we(Y1, Y2) + we(Z1,1, Z2,1)−we(Z1,1, Z1,2) < we(Y1, Y2). This is a

contradiction, implying that we(Z1,1, X1 \Z1,1) = we(Z1,1, Z1,2) ≤ we(Z1,1, Z2,1). This inequality,

(33), (34), and (35) prove the required inequality for n1 = 2.

Lemma 13. Assume that the submodular system (V, f) is constructed from a hypergraph G =

(V, E) with weight w : E → ℜ+ as described in Section 2.2, that P and Pk in Theorem 10

satisfy (iv), and that shrinking the components of the partition [C1, C2, . . . , Ck′ ] does not pre-

serve Pk. Then the k-partition [R1, R2, . . . , Rk−1, X2] of (V, f) achieves the approximation factor

max{k/3, k/2− 1}.

Proof. By Lemmas 8 and 12,

f(R1, R2, . . . , Rk−1, X2) ≤







k
3f(Pk) n1 = 2,

k+1−n1

2 f(Pk) n1 ≥ 3.

The right-hand side of this inequality is at most max(k/3, k/2− 1)f(Pk).

Lemmas 13 and 11 improve Theorem 11 as follows.

Theorem 12. For the hypergraph k-cut problem, Algorithm MinkPt achieves the approximation

factors 5/3 for k = 5 and k/2− 1 for k ≥ 6.

Proof. Let α′
k be the approximation factor achieved by Algorithm MinkPt for the hypergraph

k-cut problem. Then by Lemmas 13 and 11, we can improve the equality (30) in the proof of

Theorem 11 as follows:

α′
k = max

{

k/3, k/2− 1, α′
k−1, min(α′

i + α′
k−i, 1.5α′

k−i) | 2 ≤ i ≤ ⌊k/2⌋
}

.

Remember that α′
2 = α′

3 = 1 and α′
4 = 4/3 by Theorems 6 and 8. By the induction on k, we can

prove that the right-hand side of this equality is 5/3 for k = 5 and k/2− 1 for k ≥ 6.

7 Concluding remarks

In this paper, we have shown that the hypergraph k-cut problem is contained by the submodular

k-partition problem and can be reduced to the terminal k-vertex cut problem in bipartite graphs.

In addition, we have presented algorithms for the submodular k-partition problem. For k = 3, our

algorithm is the first exact algorithm for this problem. For k ≥ 4, our algorithms achieve the better

approximation factors than the previous algorithms. We have also discuss their approximation

factors for the hypergraph k-cut problem.
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In spite of the progress made by this paper, it remains open whether the hypergraph k-cut

problem and the submodular system k-partition problem are polynomial-time solvable or NP-hard

for fixed k ≥ 4. This is a challenging future work.
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