Abstract
The submodular system k-partition problem is a problem of partitioning a given finite set V into k non-empty subsets V 1,V 2, ...,V k so that \(\sum_{i=1}^k f(V_i)\) is minimized where f is a non-negative submodular function on V, and k is a fixed integer. This problem contains the hypergraph k-cut problem. In this paper, we design the first exact algorithm for k = 3 and approximation algorithms for k ≥ 4. We also analyze the approximation factor for the hypergraph k-cut problem.
This work was partially supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Frank, A.: Applications of Submodular Functions. Surveys in Combinatorics. Cambridge London Mathematical Society Lecture Notes Series, vol. 187, pp. 85–136 (1993)
Fujishige, S.: Submodular Function and Optimization. North-Holland, Amsterdam (1991)
Fukunaga, T.: Computing Minimum Multiway Cuts in Hypergraphs from Hypertree Packings. Technical report, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University (2009)
Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway Cuts in Node Weighted Graphs. J. Algorithms 50, 49–61 (2004)
Gasieniec, L., Jansson, J., Lingas, A., Óstlin, A.: On the Complexity of Constructing Evolutionary Trees. J. Comb. Opt. 3, 183–197 (1999)
Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem. J. ACM 35, 921–940 (1988)
Goldschmidt, O., Hochbaum, D.: A Polynomial Algorithm for the k-cut Problem for Fixed k. Math. Operations Research 19, 24–37 (1994)
Iwata, S.: Submodular Function Minimization. Math. Prog. 112, 45–64 (2008)
Kamidoi, Y., Yoshida, N., Nagamochi, H.: A Deterministic Algorithm for Finding All Minimum k-way Cuts. SIAM J. Comp. 36, 1329–1341 (2006)
Karger, D.R., Stein, C.: A New Approach to the Minimum Cut Problem. J. ACM 43, 601–640 (1996)
Lawler, E.L.: Cutsets and Partitions of Hypergraphs. Networks 3, 275–285 (1973)
Nagamochi, H.: Algorithms for the Minimum Partitioning Problems in Graphs. IEICE Trans. Inf. Sys. J86-D-1, 53–68 (2003)
Queyranne, M.: On Optimum Size-constrained Set Partitions. In: Proceedings of AUSSOIS (1999)
Thorup, M.: Minimum k-way Cuts via Deterministic Greedy Tree Packing. In: 40th Annual ACM Symposium on Theory of Computing, pp. 159–166 (2008)
Vazirani, V.V., Yannakakis, M.: Suboptimal Cuts: Their Enumeration, Weight and Number. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 366–377. Springer, Heidelberg (1992)
Xiao, M.: Finding Minimum 3-way Cuts in Hypergraphs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 270–281. Springer, Heidelberg (2008)
Xiao, M.: An Improved Divide-and-Conquer Algorithm for Finding All Minimum k-Way Cuts. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 208–219. Springer, Heidelberg (2008)
Zhao, L., Nagamochi, H., Ibaraki, T.: A Unified Framework for Approximating Multiway Partition Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 682–694. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Okumoto, K., Fukunaga, T., Nagamochi, H. (2009). Divide-and-Conquer Algorithms for Partitioning Hypergraphs and Submodular Systems. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-10631-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10630-9
Online ISBN: 978-3-642-10631-6
eBook Packages: Computer ScienceComputer Science (R0)