Skip to main content

Analysis of Ergodicity of a Fuzzy Possibilistic Markov Model

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Abstract

Performing ergodicity analysis is essential to study the long realization of a model. In this paper we analyze the ergodicity, i.e.,the existence of the limiting fuzzy transition possibility matrix with identical rows for the fuzzy transition possibility matrix \(\tilde{H}\) of a fuzzy possibilistic Markov model which contains a state j such that the transition from every state to the state j is a sure event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avrachekov, K.E., Sanchez, E.: Fuzzy Markov Chain: Specificities and Properties. Fuzzy Optimization and Decision Making 1, 143–159 (2002)

    Article  MathSciNet  Google Scholar 

  2. Buckly, J.J., Eslami, E.: Fuzzy Markov Chains:Uncetain Probabilities. Math Ware and Soft Computing 9, 33–41 (2002)

    Google Scholar 

  3. Buckly, J.J., Feuring, T., Hayashi, Y.: Fuzzy Markov Chains. In: Proc. 9th IFSA World Congress and 20th NAFIPS International Conference, pp. 2708–2711 (2001)

    Google Scholar 

  4. Imai, H., et al.: The Period of Powers of a Fuzzy Matrix. Fuzzy Sets and Systems 109, 405–408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kruse, R., Emden, R.B., Cordes, R.: Processor Power Considerations- An Application of Fuzzy Markov Chains. Fuzzy Sets and Systems 21, 289–299 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Praba, B., Sujatha, R., Hilda Christy Gnanam, V.: Classification and Steady State Analysis for Fuzzy Possibilistic Markov Chain (Communicated)

    Google Scholar 

  7. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer Science Applications. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Praba, B., Sujatha, R., Gnanam, V.H.C. (2009). Analysis of Ergodicity of a Fuzzy Possibilistic Markov Model. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics