Abstract
A hybrid hierarchical conformational sampling evolutionary algorithm is presented in this chapter, relying on different parallelization models. After first reviewing general conformational sampling aspects, e.g. existing approaches, complexity matters, force field functions, a focus is considered for the protein structure prediction problem. Furthermore, having as basis the highly multimodal nature of the energy landscape structure, a hybrid evolutionary approach is defined, enclosing conjugate gradient and adaptive simulated annealing enforced components. An insular model is employed, the conformational sampling process being conducted on a collaborative basis. Nonetheless, although low energy conformations were obtained, no close to native conformations were attained. Consequently, a higher complexity hierarchical paradigm has been constructed, with incentive following results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alba, E., Talbi, E.G., Luque, G., Melab, N.: Metaheuristics and parallelism. In: Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on Parallel and Distributed Computing, vol. 4, pp. 79–104. Wiley, Chichester (2005)
Alder, B., Wainwright, T.: Phase transition for a hard sphere system. Journal of Chemical Physics 27, 1208–1209 (1957)
Alder, B., Wainwright, T.: Studies in molecular dynamics. i. general method. Journal of Chemical Physics 31, 459–466 (1959)
Bernstein, F., Koetzle, T., Williams, G., Meyer Jr., E.F., Brice, M., Rodgers, J., Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology 112, 535–542 (1977)
Buck, I.: Gpu computing: Programming a massively parallel processor. In: Proceedings of the International Symposium on Code Generation and Optimization (CGO 2007), p. 17. IEEE Computer Society, Washington (2007)
Butenhof, D.: Programming with POSIX Threads. Professional Computing Series. Addison-Wesley Longman Publishing Co., Boston (1997)
Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)
Cahon, S., Melab, N., Talbi, E.G.: An enabling framework for parallel optimization on the computational grid. In: Proceedings of International Symposium on Cluster Computing and the Grid (CCGrid 2005), vol. 2, pp. 702–709. IEEE Computer Society, Washington (2005)
Calland, P.Y.: On the structural complexity of a protein. Protein Engineering 16(2), 79–86 (2003), http://peds.oxfordjournals.org/cgi/content/abstract/16/2/79
Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell (2000)
Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.: Grid’5000: A Large Scale and Highly Reconfigurable Grid Experimental Testbed. In: Proceedings of IEEE/ACM International Workshop on Grid Computing (GRID 2005), pp. 99–106. IEEE Computer Society, Washington (2005), http://dx.doi.org/10.1109/GRID.2005.1542730
Cozzone, A.: Proteins: Fundamental chemical properties. Encyclopedia of Life Sciences, 1–10 (2002), http://doi.wiley.com/10.1038/npg.els.0001330
Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the complexity of protein folding. Journal of computational biology 5(3), 423–465 (1998)
Dauber-Osguthorpe, P., Roberts, V., Osguthorpe, D., Wolff, J., Genest, M., Hagler, A.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function, and Genetics 4(1), 31–47 (1988), http://dx.doi.org/10.1002/prot.340040106
Dill, K.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501–1509 (1985), http://view.ncbi.nlm.nih.gov/pubmed/3986190
Dorsett, H., White, A.: Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials. Tech. Rep. DSTO-GD-0253, Department of Defense, Weapons Systems Division, Aeronautical and Maritime Research Laboratory, Salisbury, South Australia (2000)
Fletcher, R., Powell, M.: A rapidly convergent descent method for minimization. Computer Journal 6, 163–168 (1963)
Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Computer Journal 7, 149–154 (1964)
Foster, I., Kesselman, C.: The Grid: Blueprint for a new computing infrastructure. Morgan Kaufmann Publishers, Los Altos (2003)
Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International Journal of High Performance Computing Applications 15(3), 200–222 (2001), http://dx.doi.org/10.1177/109434200101500302
Garwin, L., Lincoln, T.: A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press, Chicago (2003)
Graham, R., Shipman, G., Barrett, B., Castain, R., Bosilca, G., Lumsdaine, A.: Open mpi: A high-performance, heterogeneous mpi. In: Proceedings of CLUSTER. IEEE, Los Alamitos (2006), http://dblp.uni-trier.de/db/conf/cluster/cluster2006.html#GrahamSBCBL06
Gropp, W.: Mpich2: A new start for mpi implementations. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J., Volkert, J. (eds.) PVM/MPI 2002. LNCS, vol. 2474, p. 7. Springer, Heidelberg (2002)
Gropp, W., Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.: MPI: The Complete Reference, vol. 2. MIT Press, Cambridge (1998)
Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)
Horvath, D., Brillet, L., Roy, S., Conilleau, S., Tantar, A.A., Boisson, J.C., Melab, N., Talbi, E.G.: Local vs. global search strategies in evolutionary grid-based conformational sampling & docking. In: Proceedings of IEEE Congres on Evolutionary Computation, CEC 2009 (2009)
Ingber, L.: Adaptive simulated annealing (asa), global optimization c-code. Tech. rep., Caltech Alumni Association (1993)
Ingber, L.: Simulated annealing: Practice versus theory. Journal of Mathematical Computation Modelling 18(11), 29–57 (1993)
Ingber, L.: Adaptive simulated annealing (asa): Lessons learned. Control and Cybernetics 25, 33–54 (1996)
Ingber, L.: Adaptive simulated annealing (asa) and path-integral (pathint) algorithms: Generic tools for complex systems. Tech. rep., Chicago, IL (2001)
Ingber, L., Rosen, B.: Genetic algorithms and very fast simulated reannealing: A comparison. Mathematical Computer Modeling 16(11), 87–100 (1992)
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco (1995)
Keijzer, M., Guervós, J., Romero, G., Schoenauer, M.: Evolving objects: A general purpose evolutionary computation library. In: Proceedings of European Conference on Artificial Evolution (EA 2002), pp. 231–244. Springer, London (2002)
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983), citeseer.ist.psu.edu/kirkpatrick83optimization.html
Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid resource management systems for distributed computing. Software Practice and Experience 32(2), 135–164 (2002), citeseer.ist.psu.edu/krauter01taxonomy.html
Lander, E.S., Linton, L.M., Birren, B., et al.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)
Little, P.: Dna sequencing: the silent revolution. In: A Century of Nature: Twenty-One Discoveries that Changed Science and the World, ch. 16. University of Chicago Press, Chicago (2003)
McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953), http://link.aip.org/link/?JCP/21/1087/1
Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39(3), 407–460 (1997), citeseer.ist.psu.edu/neumaier97molecular.html
Ngo, J.T., Marks, J.: Computational complexity of a problem in molecular structure prediction. Protein Engineering 5(4), 313–321 (1992), http://peds.oxfordjournals.org/cgi/content/abstract/5/4/313
Pande, V., Baker, I., Chapman, J., Elmer, S., Khaliq, S., Larson, S., Rhee, Y., Shirts, M., Snow, C., Sorin, E., Zagrovic, B.: Atomistic protein folding simulations on the submillisecond timescale using worldwide distributed computing. Biopolymers 68(1), 91–109 (2003)
Pant, A., Jafri, H.: Communicating efficiently on cluster based grids with mpich-vmi. In: Proceedings of CLUSTER, pp. 23–33. IEEE Computer Society, Los Alamitos (2004), http://dblp.uni-trier.de/db/conf/cluster/cluster2004.html#PantJ04
Polak, E., Ribière, G.: Note sur la convergence des méthodes de directions conjuguées. Revue française d’informatique et de recherche opérationnelle 16, 35–43 (1969)
Ponder, J., Case, D.: Force fields for protein simulations. Advances in Protein Chemistry 66, 27–85 (2003)
Rabow, A., Scheraga, H.: Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator. Protein Science 5(9), 1800–1815 (1996), http://www.proteinscience.org/cgi/content/abstract/5/9/1800
Schulten, K., Phillips, J., Kale, L., Bhatele, A.: Biomolecular modeling in the era of petascale computing. In: Bader, D. (ed.) Petascale Computing: Algorithms and Applications, pp. 165–181. Chapman & Hall/CRC Press, Boca Raton (2008)
Shewchuk, J.: An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., Carnegie Mellon University, Pittsburgh, PA, USA (1994), http://portal.acm.org/citation.cfm?id=865018
Shirts, M., Pande, V.: COMPUTING: Screen Savers of the World Unite! Science 290(5498), 1903–1904 (2000)
Stewart, C., Müller, M., Lingwall, M.: Progress towards petascale applications in biology: Status in 2006. In: Proceedings of Euro-Par Workshops, pp. 289–303 (2006)
Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
Tantar, A.A., Melab, N., Demarey, C., Talbi, E.G.: Building a virtual globus grid in a reconfigurable environment - a case study: Grid5000. Tech. Rep. inria-00168130, INRIA, France (2007), http://hal.inria.fr/inria-00168130/en
Tantar, A.A., Melab, N., Talbi, E.G.: A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction. Soft Computing 12(12), 1185–1198 (2008)
Tantar, A.-A., Melab, N., Talbi, E.-G.: An analysis of dynamic mutation operators for conformational sampling. In: Biologically-inspired Optimisation Methods: Parallel Algorithms, Systems and Applications. Studies in Computational Intelligence. Springer, Heidelberg (2009)
Tantar, E., Tantar, A.A., Melab, N., Talbi, E.G.: Analysis of local search algorithms for conformational sampling. In: Advances in Parallel Computing, Parallel Programming and Applications on Grids, P2P and Networked-based Systems. IOS Press, Amsterdam (2009)
Venter, J., Venter, J., Adams, M., et al.: The sequence of the human genome. Science 291(5507), 1304–1351 (2001), http://www.sciencemag.org/cgi/content/abstract/291/5507/1304
Van de Waterbeemd, H., Carter, R., Grassy, G., Kubinyi, H., Martin, Y., Tute, M., Willett, P.: Glossary of terms used in computational drug design. Pure and Applied Chemistry 69(5), 1137–1152 (1997)
White, A., Zerilli, F., Jones, H.: Ab initio calculation of intermolecular potential parameters for gaseous decomposition products of energetic materials. Tech. Rep. DSTO-TR-1016, Department of Defense, Energetic Materials Research and Technology Department, Naval Surface Warfare Center, DSTO-TR-1016, Melbourne Victoria 3001, Australia (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Tantar, AA., Melab, N., Talbi, EG. (2010). A Grid-Based Hybrid Hierarchical Genetic Algorithm for Protein Structure Prediction. In: de Vega, F.F., Cantú-Paz, E. (eds) Parallel and Distributed Computational Intelligence. Studies in Computational Intelligence, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10675-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-10675-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10674-3
Online ISBN: 978-3-642-10675-0
eBook Packages: EngineeringEngineering (R0)