Abstract
This chapter is dedicated to an investigation on the role of explicit niching and communication messages in distributed evolutionary multi-objective optimization. Localization is employed to implement explicit niching. Several options are selected for communication messages including non-dominated solutions and statistics such as the centroid of the non-dominated set, the direction of improvement, or weighted direction of improvement. As a result, a distributed system using the framework of local models is developed to support distributed computing in evolutionary multi-objective optimization. This system provides a flexibility in applying different architectures such as master/slave, island as well as the hybridization of the two. An in-depth analysis is carried out on a simulation study using the system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs (1991)
Banos, R., Gil, C., Paechter, B., Ortega, J.: Parallelization of population-based multi-objective meta-heuristics: An empirical study. Applied Mathematical Modelling 30, 578–592 (2006)
Branke, J., Schmeck, H., Deb, K., Maheshwar, R.S.: Parallelizing multiobjective evolutionary algorithms: Cone separation. In: Congress on Evol. Comp., pp. 1952–1957. IEEE Press, Los Alamitos (2004)
Bui, L.T., Abbass, H.A., Essam, D.: Local models: An approach to disibuted multi-objective optimization. Computational Optimization and Applications 42(1), 105–139 (2009)
Bui, L.T., Deb, K., Abbass, H.A., Essam, D.: Interleaving guidance in evolutionary multi-objective optimization. Journal of Computer Science and Technology 23(1), 44–66 (2008)
Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)
de Toro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.: Psfga: Parallel processing and evol. comp. for multiobjective optimisation. Parallel Computing 30, 721–739 (2004)
Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley and Son Ltd., New York (2001)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization, TIK-Report no. 112. Technical report, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich (2001)
Deb, K., Zope, P., Jain, A.: Distributed computing of pareto optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)
Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Congress on Evol. Comp. IEEE Press, Los Alamitos (2001)
Essabri, A., Gzara, M., Loukil, T.: Parallel multi-objective evolutionary algorithm with multi-front equitable distribution. In: Fifth Int. Conf. on Grid and Cooperative Computing (GCC 2006), pp. 241–244. IEEE Computer Society, Los Alamitos (2006)
Flores, S.D., Cegla, B.B., Cceres, D.B.: Telecommunication network design with parallel multi-objective evolutionary algorithms. In: 2003 Conf. on Towards a Latin American agenda for network research, pp. 1–11. ACM Press, New York (2003)
Hiroyasu, T., Miki, M., Wantanabe, S.: The new model of parallel genetic algorithm in multiobjective optimization problems- divided range multi-objective genetic algorithm. In: Congress on Evol. Comp., pp. 333–340. IEEE Press, Los Alamitos (2000)
Jaimes, A.L., Coello, C.A.C.: MRMOGA: Parallel evolutionary multiobjective optimization using multiple resolutions. In: Congress on Evol. Comp., pp. 2294–2301. IEEE Press, Los Alamitos (2005)
Jones, B.R., Crossley, W.A., Lyrintzis, A.S.: Aerodynamic and aeroacoustic optimization of airfoils via a parallel genetic algorithm. In: 7th Symposium on Multidisciplinary Analysis and Optimization, pp. 1088–1096. AIAA (1998)
Makinen, R., Neittaanmaki, P., Periaux, J., Sefrioui, M., Toivanen, J.: Parallel genetic solution for multiobjective mdo. In: Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers, pp. 352–359. Elsevier, Amsterdam (1997)
Marco, N., Lanteri, S., Desideri, J.-A., Périaux, J.: A parallel genetic algorithm for multi-objective optimization in computational fluid dynamics. In: Evolutionary Algorithms in Engineering and Computer Science, pp. 445–456. John Wiley & Sons, Ltd., Chichester (1999)
Mehnen, J., Michelitsch, T., Schmitt, K., Kohlen, T.: pMOHypEA: Parallel evolutionary multiobjective optimization using hypergraphs. Technical Report CI-187/05, the Collaborative Research Center, University of Dortmund (2005)
Obayashi, S., Sasaki, D., Takeguchi, Y., Hirose, N.: Multiobjetive evol. comp. for supersonic wing-shape optimization. IEEE Trans. on Evol. Comp. 4(2), 182–187 (2000)
Quagliarella, D., Vicini, A.: Sub-population policies for a parallel multiobjective genetic algorithm with applications to wing design. In: IEEE Int. Conf. On Systems, Man, And Cybernetics, pp. 3142–3147. IEEE Press, Los Alamitos (1998)
Rowe, J., Vinsen, K., Marvin, N.: Parallel gas for multiobjective functions. In: Second Nordic Workshop on Genetic Algorithms and Their Applications, pp. 61–70. University of Vaasa, Finland (1996)
Sait, S.M., Faheemuddin, M., Minhas, M.R., Sanaullah, S.: Multiobjective vlsi cell placement using distributed genetic algorithm. In: 2005 Conf. on Genetic and Evol. Comp., pp. 1585–1586. ACM Press, New York (2005)
Stanley, T.J., Mudge, T.: A parallel genetic algorithm for multiobjective microprocessor design. In: The Sixth Int. Conf. On Genetic Algorithms, pp. 597–604. Morgan Kaufmann Publishers, San Francisco (1995)
Streichert, F., Ulmer, H., Zell, A.: Parallelization of multiobjective evolutionary algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)
Talbi, E.-G., Meunier, H.: Hierarchical parallel approach for gsm mobile network design. Journal of Parallel Distributed Computing 66(2), 274–290 (2006)
Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multi-objective optimization. IEEE Trans. on Evol. Comp. 10(5), 527–549 (2006)
Tan, K.C., Yang, Y.J., Lee, T.H.: Designing a distributed cooperative coevolutionary algorithm for multiobjective optimization. In: Congress on Evol. Comp., pp. 2513–2520. IEEE Press, Los Alamitos (2003)
Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. on Evol. Comp. 7(2), 144–173 (2003)
Xiao, N., Armstrong, M.P.: A specialized island model and its application in multiobjective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1530–1540. Springer, Heidelberg (2003)
Xiong, S., Li, F.: Parallel strength pareto multi-objective evolutionary algorithm for optimization problems. In: IEEE Congress on Evol. Comp., pp. 2712–2718. IEEE Press, Los Alamitos (2003)
Xu, K., Louis, S.J., Mancini, R.C.: A scalable parallel genetic algorithm for x-ray spectroscopic analysis. In: 2005 Conf. on Genetic and Evol. Comp., pp. 811–816. ACM Press, New York (2005)
Zhu, Z.-Y., Leung, K.-S.: Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems. In: Congress on Evol. Comp., pp. 837–842. IEEE Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bui, L.T., Essam, D., Abbass, H.A. (2010). The Role of Explicit Niching and Communication Messages in Distributed Evolutionary Multi-objective Optimization. In: de Vega, F.F., Cantú-Paz, E. (eds) Parallel and Distributed Computational Intelligence. Studies in Computational Intelligence, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10675-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-10675-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10674-3
Online ISBN: 978-3-642-10675-0
eBook Packages: EngineeringEngineering (R0)