Skip to main content

The Role of Explicit Niching and Communication Messages in Distributed Evolutionary Multi-objective Optimization

  • Chapter
Parallel and Distributed Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 269))

  • 649 Accesses

Abstract

This chapter is dedicated to an investigation on the role of explicit niching and communication messages in distributed evolutionary multi-objective optimization. Localization is employed to implement explicit niching. Several options are selected for communication messages including non-dominated solutions and statistics such as the centroid of the non-dominated set, the direction of improvement, or weighted direction of improvement. As a result, a distributed system using the framework of local models is developed to support distributed computing in evolutionary multi-objective optimization. This system provides a flexibility in applying different architectures such as master/slave, island as well as the hybridization of the two. An in-depth analysis is carried out on a simulation study using the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  2. Banos, R., Gil, C., Paechter, B., Ortega, J.: Parallelization of population-based multi-objective meta-heuristics: An empirical study. Applied Mathematical Modelling 30, 578–592 (2006)

    Article  MATH  Google Scholar 

  3. Branke, J., Schmeck, H., Deb, K., Maheshwar, R.S.: Parallelizing multiobjective evolutionary algorithms: Cone separation. In: Congress on Evol. Comp., pp. 1952–1957. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  4. Bui, L.T., Abbass, H.A., Essam, D.: Local models: An approach to disibuted multi-objective optimization. Computational Optimization and Applications 42(1), 105–139 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bui, L.T., Deb, K., Abbass, H.A., Essam, D.: Interleaving guidance in evolutionary multi-objective optimization. Journal of Computer Science and Technology 23(1), 44–66 (2008)

    Article  Google Scholar 

  6. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer, Boston (2000)

    MATH  Google Scholar 

  7. de Toro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.: Psfga: Parallel processing and evol. comp. for multiobjective optimisation. Parallel Computing 30, 721–739 (2004)

    Article  Google Scholar 

  8. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley and Son Ltd., New York (2001)

    Google Scholar 

  9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization, TIK-Report no. 112. Technical report, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich (2001)

    Google Scholar 

  10. Deb, K., Zope, P., Jain, A.: Distributed computing of pareto optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Congress on Evol. Comp. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  12. Essabri, A., Gzara, M., Loukil, T.: Parallel multi-objective evolutionary algorithm with multi-front equitable distribution. In: Fifth Int. Conf. on Grid and Cooperative Computing (GCC 2006), pp. 241–244. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  13. Flores, S.D., Cegla, B.B., Cceres, D.B.: Telecommunication network design with parallel multi-objective evolutionary algorithms. In: 2003 Conf. on Towards a Latin American agenda for network research, pp. 1–11. ACM Press, New York (2003)

    Chapter  Google Scholar 

  14. Hiroyasu, T., Miki, M., Wantanabe, S.: The new model of parallel genetic algorithm in multiobjective optimization problems- divided range multi-objective genetic algorithm. In: Congress on Evol. Comp., pp. 333–340. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  15. Jaimes, A.L., Coello, C.A.C.: MRMOGA: Parallel evolutionary multiobjective optimization using multiple resolutions. In: Congress on Evol. Comp., pp. 2294–2301. IEEE Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  16. Jones, B.R., Crossley, W.A., Lyrintzis, A.S.: Aerodynamic and aeroacoustic optimization of airfoils via a parallel genetic algorithm. In: 7th Symposium on Multidisciplinary Analysis and Optimization, pp. 1088–1096. AIAA (1998)

    Google Scholar 

  17. Makinen, R., Neittaanmaki, P., Periaux, J., Sefrioui, M., Toivanen, J.: Parallel genetic solution for multiobjective mdo. In: Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers, pp. 352–359. Elsevier, Amsterdam (1997)

    Google Scholar 

  18. Marco, N., Lanteri, S., Desideri, J.-A., Périaux, J.: A parallel genetic algorithm for multi-objective optimization in computational fluid dynamics. In: Evolutionary Algorithms in Engineering and Computer Science, pp. 445–456. John Wiley & Sons, Ltd., Chichester (1999)

    Google Scholar 

  19. Mehnen, J., Michelitsch, T., Schmitt, K., Kohlen, T.: pMOHypEA: Parallel evolutionary multiobjective optimization using hypergraphs. Technical Report CI-187/05, the Collaborative Research Center, University of Dortmund (2005)

    Google Scholar 

  20. Obayashi, S., Sasaki, D., Takeguchi, Y., Hirose, N.: Multiobjetive evol. comp. for supersonic wing-shape optimization. IEEE Trans. on Evol. Comp. 4(2), 182–187 (2000)

    Article  Google Scholar 

  21. Quagliarella, D., Vicini, A.: Sub-population policies for a parallel multiobjective genetic algorithm with applications to wing design. In: IEEE Int. Conf. On Systems, Man, And Cybernetics, pp. 3142–3147. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  22. Rowe, J., Vinsen, K., Marvin, N.: Parallel gas for multiobjective functions. In: Second Nordic Workshop on Genetic Algorithms and Their Applications, pp. 61–70. University of Vaasa, Finland (1996)

    Google Scholar 

  23. Sait, S.M., Faheemuddin, M., Minhas, M.R., Sanaullah, S.: Multiobjective vlsi cell placement using distributed genetic algorithm. In: 2005 Conf. on Genetic and Evol. Comp., pp. 1585–1586. ACM Press, New York (2005)

    Google Scholar 

  24. Stanley, T.J., Mudge, T.: A parallel genetic algorithm for multiobjective microprocessor design. In: The Sixth Int. Conf. On Genetic Algorithms, pp. 597–604. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  25. Streichert, F., Ulmer, H., Zell, A.: Parallelization of multiobjective evolutionary algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)

    Google Scholar 

  26. Talbi, E.-G., Meunier, H.: Hierarchical parallel approach for gsm mobile network design. Journal of Parallel Distributed Computing 66(2), 274–290 (2006)

    Article  MATH  Google Scholar 

  27. Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multi-objective optimization. IEEE Trans. on Evol. Comp. 10(5), 527–549 (2006)

    Article  Google Scholar 

  28. Tan, K.C., Yang, Y.J., Lee, T.H.: Designing a distributed cooperative coevolutionary algorithm for multiobjective optimization. In: Congress on Evol. Comp., pp. 2513–2520. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  29. Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. on Evol. Comp. 7(2), 144–173 (2003)

    Article  Google Scholar 

  30. Xiao, N., Armstrong, M.P.: A specialized island model and its application in multiobjective optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1530–1540. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Xiong, S., Li, F.: Parallel strength pareto multi-objective evolutionary algorithm for optimization problems. In: IEEE Congress on Evol. Comp., pp. 2712–2718. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  32. Xu, K., Louis, S.J., Mancini, R.C.: A scalable parallel genetic algorithm for x-ray spectroscopic analysis. In: 2005 Conf. on Genetic and Evol. Comp., pp. 811–816. ACM Press, New York (2005)

    Google Scholar 

  33. Zhu, Z.-Y., Leung, K.-S.: Asynchronous self-adjustable island genetic algorithm for multi-objective optimization problems. In: Congress on Evol. Comp., pp. 837–842. IEEE Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bui, L.T., Essam, D., Abbass, H.A. (2010). The Role of Explicit Niching and Communication Messages in Distributed Evolutionary Multi-objective Optimization. In: de Vega, F.F., Cantú-Paz, E. (eds) Parallel and Distributed Computational Intelligence. Studies in Computational Intelligence, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10675-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10675-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10674-3

  • Online ISBN: 978-3-642-10675-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics