Skip to main content

Robust Local Tangent Space Alignment

  • Conference paper
Neural Information Processing (ICONIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5863))

Included in the following conference series:

Abstract

This paper investigates noise manifold learning problem, which is a key issue in applying manifold learning to practical problem. A robust version of LTSA called RLTSA is proposed. The proposed RLTSA algorithm makes LTSA more robust from three aspects: firstly robust PCA algorithm is used instead of the standard SVD to reduce influence of noise on local tangent space coordinates; secondly RLTSA chooses neighborhoods that are approximated well by the local tangent space coordinates to align with the global coordinates; thirdly in the alignment step, the influence of noise on embedding result is further reduced by endowing clean data points and noise data points with different weights into local alignment errors. Experiments on both synthetic data sets and real data sets demonstrate the effectiveness of our RLTSA when dealing with noise manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., Silva, V.d., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  3. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM J. Scientific Computing 26, 313–338 (2005)

    Article  MathSciNet  Google Scholar 

  4. Lin, T., Zha, H.: Riemannian Manifold Learning. IEEE Trans. Pattern Anal. Mach. Intell. 30, 796–809 (2008)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Chang, H., Yeung, D.-Y.: Robust locally linear embedding. Pattern Recognit. 39, 1053–1065 (2006)

    Article  MATH  Google Scholar 

  7. Chen, H., Jiang, G., Yoshihira, K.: Robust nonlinear dimensionality reduction for manifold learning. In: ICPR 2006, NJ 08855-1331, United States, vol. 2, pp. 447–450. IEEE, Piscataway (2006)

    Google Scholar 

  8. Yin, J., Hu, D., Zhou, Z.: Noisy manifold learning using neighborhood smoothing embedding. Pattern Recognit. Lett. 29, 1613–1620 (2008)

    Article  Google Scholar 

  9. Park, J., Zhang, Z., Zha, H., Kasturi, R.: Local smoothing for manifold learning, vol. 2, pp. 452–459. Institute of Electrical and Electronics Engineers Computer Society, Piscataway (2004)

    Google Scholar 

  10. Hein, M., Maier, M.: Manifold Denoising. In: Advances in Neural Information Processing Systems, vol. 19, pp. 561–568. MIT Press, Cambridge (2007)

    Google Scholar 

  11. Wang, J.: Improve local tangent space alignment using various dimensional local coordinates. Neurocomputing 71, 3575–3581 (2008)

    Article  Google Scholar 

  12. Yang, L.: Alignment of Overlapping Locally Scaled Patches for Multidimensional Scaling and Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 30, 438–450 (2008)

    Article  Google Scholar 

  13. Zha, H., Zhang, Z.: Spectral analysis of alignment in manifold learning. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), vol. 5, pp. 1069–1072 (2005)

    Google Scholar 

  14. Zha, H., Zhang, Z.: Spectral Properties of the Alignment Matrices in Manifold Learning. To appear in SIAM Review (2008)

    Google Scholar 

  15. Hubert, M., Rousseeuw, P.J., Vanden Branden, K.: ROBPCA: A new approach to robust principal component analysis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhan, Y., Yin, J. (2009). Robust Local Tangent Space Alignment. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10677-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10676-7

  • Online ISBN: 978-3-642-10677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics