Abstract
Cellular neural networks proved to be a useful parallel computing system for image processing applications. Cellular neural networks (CNNs) constitute a class of recurrent and locally coupled arrays of identical cells. The connectivity among the cells is determined by a set of parameters called templates. CNN templates are the key parameters to perform a desired task. One of the challenging problems in designing templates is to find the optimal template that functions appropriately for the solution of the intended problem. In this paper, we have implemented the Iterative Annealing Optimization Method on the analog CNN chip to find an optimum template by training a randomly selected initial template. We have been able to show that the proposed system is efficient to find the suitable template for some specific image processing applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chua, L.O., Yang, L.: Cellular neural networks: Theory. IEEE Trans. Circuits Syst., 1257–1272 (1998)
Fasih, A., Chedjou, J., Kyamakya, K.: Ultra Fast Object Counting Based-on Cellular Neural Network. In: First International Workshop on Nonlinear Dynamcis and Synchronization (INDS 2008), pp. 181–183 (2008)
Roska, T., Chua, L.O.: The CNN Universal Machine: An Analogic Array Computer. IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing, 163–173 (1993)
Liñán, G., DomÃnguez-Castro, R., Espejo, S., RodrÃguez-Vázquez, A.: ACE16k: A programmable focal plane vision processor with 128x128 resolution. In: Eur. Conf. Circuit Theory and Design, pp. 345–348 (2001)
Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Alvey Vision Conference, pp. 147–151 (1988)
Kozek, T., Roska, T., Chua, L.O.: Genetic Algorithm for CNN Template Learning. IEEE Transantions on Circuits and Systems I: Fundamental Theory and Applications, 392–402 (1993)
Bahram, M., Cheng, Z., Moschytz, G.S.: Learning Algorithms for Cellular Neural Networks. In: ISCAS 1998, pp. 159–162 (1988)
Loncar, A., Kunz, R., Tetzlaff, R.: SCNN 2000 - Part I: Basic Structure and Features of the Simulation System for Cellular Neural Networks. In: IEEE Int. Workshop on Cellular Neural Networks and Their Applications, pp. 123–128 (2000)
Chua, L.O., Roska, T.: Cellular Neural Networks and Visiual Computing: Foundation and Applications. Cambridge University Press, Cambridge (2002)
Bi-i Vision System: User Manual
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–679 (1983)
Feiden, D., Tetzlaff, R.: Iterative annealing a new efficient optimization method for cellular neural networks. Image Processing, 549–552 (2001)
Feiden, D., Tetzlaff, R.: On-Chip Training for Cellular Neural Networks using Iterative Annealing. VLSI circuits and systems 470–477 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sevgen, S., Yucel, E., Arik, S. (2009). Cellular Neural Networks Template Training System Using Iterative Annealing Optimization Technique on ACE16k Chip. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-10677-4_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10676-7
Online ISBN: 978-3-642-10677-4
eBook Packages: Computer ScienceComputer Science (R0)