Abstract
Chaos has been applied in cryptography in the past decades since there are tight relationships between chaos and cryptography. Especially, spatiotemporal chaotic systems can be used to design cryptosystems with satisfactory properties. The chapter focuses on applying a typical spatiotemporal chaotic system, i.e., a coupled map lattice (CML) in cryptography. Multiple-output pseudo-random bit generators (PRBGs) based on CMLs with various constructions and parameters values are designed. Their properties are investigated and compared to determine a certain CML with certain parameters from which the resulting PRBG have satisfactory properties. Additionally, a stream cipher based on the CML is designed and analyzed. It is shown that it has high security, high efficiency and low cost. Moreover, a multimedia cryptosystem based on the proposed stream cipher is constructed by using a field programmable gate array (FPGA). The effects of the encryptions of the text file, the audio file and the image file by using the cryptosystem is measured as effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baranovsky, A., Daems, D.: Design of one-dimensional chaotic maps with prescribed statistical properties. Int. J. Bifurcat Chaos Appl. Sci. Eng. 5, 1585–1598 (1995)
Batista, A.M., Pinto, S.E., Viana, R.L., Lopes, S.R.: Lyapunov spectrum and synchronization of piecewise linear map lattiecs with power-law coupling. Phys. Rev. E 65 (2002)
Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1999)
Chen, G., Mao, Y., Chui, C.: A symmetric image encryption scheme based on 3rd chaotic cat maps. Chaos, Solitons & Fractals 21, 749–761 (2003)
Garcia, P., Parravano, A., Cosenza, M., Jimenez, J., Marcano, A.: Coupled map networks as communication schemes. Phys. Rev. E 65, 195–201 (2002)
Gotz, M., Kelber, K., Schwarz, W.: Discrete-time chaotic encryption systems-part i: Statistical design approach. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 44(10), 963–970 (1997)
Kaneko, K.: Theory and Application of Coupled Map Lattices. John Wiley and Sons, New York(1993)
Kocarev, L., Jakimoski, G.: Pseudorandom bits generated by chaotic maps. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 50, 123–126 (2003)
Kohda, T., Tsuneda, A.: Pseudonoise sequence by chaotic nonlinear maps and their correlation properties. IEICE Trans. Commun. E76-B, 855–862 (1993)
Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: stochastic aspects of dynamics. Springer, New York (1997)
Li, P., Li, Z., Halang, W.A., Chen, G.R.: Analysis of a multiple output pseudo-randombit generator based on a spatiotemporal chaotic system. Int. J. Bifurcat Chaos Appl. Sci. Eng. 16(10), 2949–2963 (2006)
Li, P., Li, Z., Halang, W.A., Chen, G.R.: A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons & Fractals 32(5), 1867–1876 (2007)
Li, S.J.: Analyses and New Designs of Digital Chaotic Ciphers. Ph.D thesis, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, China (2003)
Shujun, L., Xuanqin, M., Yuanlong, C.: Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. In: Pandu Rangan, C., Ding, C. (nteds.) INDOCRYPT 2001. LNCs, vol. 2247, pp. 316–329. Springer, Heidelberg (2001)
Li, S.J., Chen, G.R., Qin, M.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurcat Chaos Appl. Sci. Eng. 15(10), 3119–3151 (2005)
Li, S., Á lvarez, G., Chen, G.R.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos, Soliton & Fractals 25, 109–120 (2005)
Lu, H., Wang, S., Li, X., Tang, G., Kuang, J., Ye, W., Hu, G.: A new spatiotemporally chaotic cryptosystem and its security and performance analyses. Chaos 14(3), 617–629 (2004)
Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 49(1), 28–40 (2002)
Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
NIST, Security requirements for cryptographic modules (FIPS pub 140-2) (2001), http://csrc.nist.gov/publications/fips/fips140-2
Sang, T., Wang, R., Yan, Y.: Clock-controlled chaotic keystream generators. Electronics Letters 34(20), 1932–1934 (1998)
Schneier, B.: Applied Cryptography: Protocols, algorithms, and source code in C. John Wiley and Sons, New York (1996)
Schuster, H.G.: Handbook of Chaos Control. WILEY-VCH, Weinheim (1999)
Soto, J.: Statistical testing of random number generators (1999), http://csrc.nist.gov/rng/rng5.html
Stojanovski, T., Kocarev, L.: Chaos-based random number generators-part i: Analysis. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 48(3), 281–288 (2001)
Tang, G., Wang, S., Lu, H., Hu, G.: Chaos-based cryptograph incorporated with S-box algebraic operation. Phys. Lett. A 318, 388–398 (2003)
Wang, S., Liu, W., Lu, H., Kuang, J., Hu, G.: Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications. Int. J. Mod. Phys. B 18(17-19), 2617–2622 (2004)
Wang, S., Ye, W., Lu, H., Kuang, J., Li, J., Luo, Y., Hu, G.: A spatiotemporal-chaosbased encryption having overall properties considerably better than advanced encryption standard. Comm. Theor. Phys. 40, 57–60 (2003)
Wikipedia (2006) Chi Test, http://en.wikipedia.org/wiki/Pearson%7s-chi-square-test
Yang, T.: A survey of chaotic secure communication systems. International Journal of Computational Cognition 2(2), 81–130 (2004)
Ye, W., Dai, Q., Wang, S., Lu, H., Kuang, J., Zhao, Z., Zhu, X., Tang, G., Huang, R., Hu, G.: Experimental realization of a highly secure chaos communication under strong channel noise. Phys. Lett. A 330, 75–84 (2004)
Zhang, H., Wang, H., Chen, W.: Oversampled chaotic binary sequences with good security. J. Circ. Syst. Comput. 11, 173–185 (2002)
Zhou, H., Ling, X.: Problems with the chaotic inverse system encryption approach. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 44(3), 268–271 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Li, P., Li, Z., Halang, W.A., Chen, G. (2010). Cryptography Based on Spatiotemporal Chaotic Systems. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds) Evolutionary Algorithms and Chaotic Systems. Studies in Computational Intelligence, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10707-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-10707-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10706-1
Online ISBN: 978-3-642-10707-8
eBook Packages: EngineeringEngineering (R0)