Abstract
A hybrid functional electrical stimulation (FES) rehabilitation system for locomotion is proposed in this paper. It has a hierarchical structure. In upper level, brain-computer technology (BCI) is used to acquire the subject’s intention. In middle level, central pattern generator (CPG) is designed to generate appropriate rhythmic motor patterns. CPG is triggered by BCI command, and send control patterns to lower level. In lower level, FES technique is used to activate the muscles, and drive the lower limbs to achieve the expected movements (i.e. locomotion). The whole system is developed according to the general nervous structure of human being. The hybrid system aims at developing a neuroprosthetic bridge for the impaired nervous system of paralyzed patients. Some preliminary results on BCI are given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley, A.S.J., Andrew, C.M., John, L.R.: An offline auditory P300 brain-computer interface using principal and independent component analysis techniques for functional electrical stimulation application. In: Proceeding of 30th EMBC, pp. 4660–4663 (2008)
Birbaumer, N.: Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43, 517–531 (2006)
Boord, P., Barriskill, A., Craig, A., Nguyen, H.: Brain-computer interface-FES integration: Towards a hands-free neuroprosthesis command system. Neuromodulation 7(4), 267–276 (2004)
Grillner, S.: Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149 (1985)
Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21, 642–653 (2008)
Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks 15, 1063–1070 (2004)
Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Engineering 4, R1–R13 (2003)
Meng, F., Tong, K.Y., Chan, S.T., Wong, W.W., Liu, K.H., Tang, K.W., Gao, X.R., Gao, S.K.: BCI-FES training system design and implementation for rehabilitation of stroke patients. In: Proceed. IEEE IJCNN conference, pp. 4103–4106 (2008)
Nicolelis, M.A., Chapin, J.K.: Controlling robots with the mind. Scientific American 287(4), 46 (2002)
Peckham, P.H., Knutson, J.S.: Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7, 327–360 (2005)
Pfurtscheller, G., Mueller, G.R., Pfurtscheller, J., Gerner, H.J., Rupp, R.: Thought’ - control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letter 351, 33–36 (2003)
Pfurtscheller, G., Mueller-Putz, G.R., Pfurtscheller, J., Rupp, R.: EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient. EURASIP Journal on Applied Signal Processing 19, 3152–3155 (2005)
Tan, H.G., Zhang, H.H., Wang, C.C., Zhang, D.G., Shee, C.Y., Ang, W.T., Guan, C.T.: A step towards discretized motion control of the upper limb using brain-computer interface and electrical stimulation. In: Proc. 13th IFESS conference (2008)
Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature (2008) doi:10.1038/nature06996
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)
Zhang, D.G., Zhu, K.Y.: Computer simulation study on central pattern generator: From biology to engineering. Intern. J. Neural Systems 16, 405–422 (2006)
Zhang, D.G., Zhu, K.Y.: Theoretical analysis on neural oscillator toward bio-mimic robot control. Intern. J. Humanoid Robotics 4, 697–715 (2007)
Zhang, D.G., Tan, H.G., Ferdinan, W., Ang, W.T.: Functional electrical stimulation in rehabilitation engineering: A survey. In: Proceed. Intern. Conf. Rehab. Eng. & Assist. Tech., Singapore, pp. 221–226 (2007)
Zhang, D.G., Zhu, K.Y.: Modeling biological motor control for human locomotion with functional electrical stimulation. Biol. Cybern. 96, 79–97 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, D., Liu, G., Huan, G., Liu, J., Zhu, X. (2009). A Hybrid FES Rehabilitation System Based on CPG and BCI Technology for Locomotion: A Preliminary Study. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds) Intelligent Robotics and Applications. ICIRA 2009. Lecture Notes in Computer Science(), vol 5928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10817-4_105
Download citation
DOI: https://doi.org/10.1007/978-3-642-10817-4_105
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10816-7
Online ISBN: 978-3-642-10817-4
eBook Packages: Computer ScienceComputer Science (R0)