Skip to main content

Non-linear Error Detection for Finite State Machines

  • Conference paper
Information Security Applications (WISA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5932))

Included in the following conference series:

Abstract

We propose the use of systematic nonlinear error detection codes to secure the next-state logic of finite state machines (FSMs). We consider attacks under an adversarial model which assumes an advanced attacker with high temporal and spatial fault injection capability. Due to the non-uniform characteristics of FSMs, simple application of the systematic non-linear codes will not provide sufficient protection. As a solution to this problem, we use randomized masking. Furthermore, we show that our proposal detects injected faults with probability exponentially close to 1.

This material is based upon work supported by the National Science Foundation under Grant No. CNS-0831416.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE 94, 370–382 (2006)

    Article  Google Scholar 

  2. Berg, M.: Fault tolerant design techniques for asynchronous single event upsets within synchronous finite state machine architectures. In: 7th International Military and Aerospace Programmable Logic Devices (MAPLD) Conference. NASA (September 2004)

    Google Scholar 

  3. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and detection procedures for a hardware implementation of the advanced encryption standard. IEEE Transactions on Computers 52(4), 492–505 (2003)

    Article  Google Scholar 

  4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Google Scholar 

  5. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Google Scholar 

  6. Cunningham, P., Anderson, R., Mullins, R., Taylor, G., Moore, S.: Improving Smart Card Security Using Self-Timed Circuits. In: Proceedings of the 8th International Symposium on Asynchronus Circuits and Systems. IEEE Computer Society, Washington (2002)

    Google Scholar 

  7. Gaubatz, G., Sunar, B.: Robust finite field arithmetic for fault-tolerant public-key cryptography. In: Breveglieri, L., Koren, I. (eds.) 2nd Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2005 (September 2005)

    Google Scholar 

  8. Gaubatz, G., Sunar, B., Savas, E.: Sequential circuit design for embedded cryptographic applications resilient to adversarial faults. IEEE Transactions on Computers 57(1), 126–138 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hammouri, G., Akdemir, K., Sunar, B.: Novel puf-based error detection methods in finite state machines. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 235–252. Springer, Heidelberg (2008)

    Google Scholar 

  10. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, p. 135. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack resistant architectures for the advanced encryption standard. In: Proc. World Computing Congress (2004)

    Google Scholar 

  12. Karpovsky, M., Kulikowski, K.J., Taubin, A.: Robust protection against fault-injection attacks on smart cards implementing the advanced encryption standard. In: DSN 2004: Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN 2004), Washington, DC, USA, p. 93. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Karpovsky, M., Taubin, A.: A new class of nonlinear systematic error detecting codes. IEEE Trans. Info. Theory 50(8), 1818–1820 (2004)

    Article  MathSciNet  Google Scholar 

  14. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Transactions on computer-aided design of integrated circuits and systems 21(12), 1509–1517 (2002)

    Article  Google Scholar 

  15. Krasniewski, A.: Concurrent error detection in sequential circuits implemented using fpgas with embedded memory blocks. In: Proceedings of the 10th IEEE International On-Line Testing Symposium (IOLTS 2004) (2004)

    Google Scholar 

  16. Kulikowski, K., Venkataraman, V., Wang, Z., Taubin, A., Karpovsky, M.: Asynchronous balanced gates tolerant to interconnect variability. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, pp. 3190–3193 (2008)

    Google Scholar 

  17. Kulikowski, K., Wang, Z., Karpovsky, M.: Comparative Analysis of Robust Fault Attack Resistant Architectures for Public and Private Cryptosystems. In: Proceedings of the 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 41–50. IEEE Computer Society, Washington (2008)

    Chapter  Google Scholar 

  18. Kulikowski, K.J., Karpovsky, M., Taubin, A.: Robust codes for fault attack resistant cryptographic hardware. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FTDC 2005) (2005)

    Google Scholar 

  19. Kulikowski, K.J., Karpovsky, M., Taubin, A.: Fault attack resistant cryptographic hardware with uniform error detection. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 185–195. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Maistri, P., Leveugle, R.: Double-Data-Rate Computation as a Countermeasure against Fault Analysis. IEEE Transactions on Computers 57(11), 1528–1539 (2008)

    Article  Google Scholar 

  21. Maistri, P., Vanhauwaert, P., Leveugle, R.: Evaluation of Register-Level Protection Techniques for the Advanced Encryption Standard by Multi-Level Fault Injections. In: 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI System (DFT 2007), pp. 499–507 (2007)

    Google Scholar 

  22. Mitra, S., McCluskey, E.: Which concurrent error detection scheme to choose? In: Proc. of Int. Test Conference (ITC), pp. 985–994. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  23. Naccache, D.: Finding faults. IEEE Security and Privacy 3(5), 61–65 (2005)

    Article  Google Scholar 

  24. Schmidt, J., Hutter, M.: Optical and em fault-attacks on crt-based rsa: Concrete results. In: Austrochip 2007: Proceedings of the 15th Austrian Workshop on Microelectronics (2007)

    Google Scholar 

  25. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attacks. In: Cryptographic Hardware and Embedded Systems-Ches 2002: 4th International Workshop, Redwood Shores, CA, USA, August 13-15 (2002) (Revised Papers)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akdemir, K.D., Hammouri, G., Sunar, B. (2009). Non-linear Error Detection for Finite State Machines. In: Youm, H.Y., Yung, M. (eds) Information Security Applications. WISA 2009. Lecture Notes in Computer Science, vol 5932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10838-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10838-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10837-2

  • Online ISBN: 978-3-642-10838-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics