Skip to main content

Mechanism behind Information Leakage in Electromagnetic Analysis of Cryptographic Modules

  • Conference paper
Information Security Applications (WISA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5932))

Included in the following conference series:

  • 1306 Accesses

Abstract

This paper presents radiation mechanism behind Electromagnetic Analysis (EMA) from remote locations. It has been widely known that electromagnetic radiation from a cryptographic chip could be exploited to conduct side-channel attacks, yet the mechanism behind the radiation has not been intensively studied. In this paper, the mechanism is explained from the view point of Electromagnetic Compatibility (EMC): electric fluctuation released from a cryptographic chip can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments. For this purpose, Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic Analysis (DEMA) are conducted on FPGA implementations of RSA and AES, respectively. In the experiments, radiation from power and communication cables attached to the FPGA platform is measured. The result indicates, the information leakage can extend beyond security boundaries through such cables, even if the module implements countermeasures against invasive attacks to deny access at its boundary. We conclude that the proposed mechanism can be used to predict circuit components that cause information leakage. We also discuss advanced attacks and noise suppression technologies as countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  2. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  3. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic Processors-A Survey. Proceedings of the IEEE 94(2), 357–369 (2006)

    Article  Google Scholar 

  4. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Countermeasures for Smart Cards. In: Proceedings of E-smart (September 2001)

    Google Scholar 

  5. Grandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Kim, C., Schlaffer, M., Moon, S.: Differential Side Channel Analysis Attacks on FPGA Implementations of ARIA. ETRI Journal. 30(2), 315–325 (2008)

    Article  Google Scholar 

  8. Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and Electromagnetic Analysis: Improved Model, Consequences and Comparisons. Integration, the VLSI Journal 40(1), 52–60 (2007)

    Article  Google Scholar 

  10. Sudo, T., Sasaki, H., Masuda, N., Drewniak, J.: Electromagnetic Interference (EMI) of System-on-Package (SOP). IEEE Transactions on Advanced Packaging 27(2), 304–314 (2004)

    Article  Google Scholar 

  11. Yang, Y., Brews, J.R.: Design Trade-offs for the Last Stage of an Unregulated, Long-channel CMOS Off-chip Driver with Simultaneous Switching Noise and Switching Time Considerations, Components, Packaging, and Manufacturing Technology, Part B. IEEE Transactions on Advanced Packaging 19(3), 481–486 (1996)

    Google Scholar 

  12. Drewniak, J., Sha, F., Van Doren, T., Hubing, T., Shaw, J.: Diagnosing and Modeling Common-mode Radiation from Printed Circuit Boards with Attached Cables. In: Proceedings of the 1995 IEEE International Symposium on Electromagnetic Compatibility, pp. 465–470 (1995)

    Google Scholar 

  13. Hockanson, D., Drewniak, J., Hubing, T., Van Doren, T., Sha, F., Wilhelm, M.: Investigation of Fundamental EMI Source Mechanisms Driving Common-mode Radiation from Printed Circuit Boards with Attached Cables. IEEE Trans. Electromagn. Compat. 38(4), 557–566 (1996)

    Article  Google Scholar 

  14. Paul, C.R.: Introduction to Electromagnetic Compatibility (Wiley Series in Microwave and Optical Engineering). Wiley Interscience, Hoboken (2006)

    Google Scholar 

  15. Side-channel Attack Standard Evaluation Board (SASEBO), http://www.rcis.aist.go.jp/special/SASEBO/

  16. AOR, LA380 Wideband Active Loop Antenna, http://www.aorusa.com/la380.html

  17. Fischer Custom Communications, Inc., F-2000 Current Probe, http://www.fischercc.com/Quadrary-Pages/Current-Probes/F-2000.htm

  18. Homma, N., Nagashima, S., Imai, Y., Aoki, T., Satoh, A.: High-resolution Side-Channel Attack Using Phase-Based Waveform Matching. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 187–200. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Cryptographic Hardware Project, Computer Structures Laboratory, Graduate School of Information Sciences, Tohoku University, http://www.aoki.ecei.tohoku.ac.jp/crypto/

  20. Miyamoto, A., Homma, N., Aoki, T., Satoh, A.: Chosen-Message SPA Attacks Against FPGA-Based RSA Hardware Implementation. In: Proceedings of the International Conference on Field Programmable Logic and Applications (FPL 2008), pp.35–40 (September 2008)

    Google Scholar 

  21. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sugawara, T. et al. (2009). Mechanism behind Information Leakage in Electromagnetic Analysis of Cryptographic Modules. In: Youm, H.Y., Yung, M. (eds) Information Security Applications. WISA 2009. Lecture Notes in Computer Science, vol 5932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10838-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10838-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10837-2

  • Online ISBN: 978-3-642-10838-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics