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Abstract

Cake-cutting protocols aim at dividing a “cake” (i.e., aidile resource) and assigning the
resulting portions to several players in a way that each efpllyers feels to have received a
“fair” amount of the cake. An important notion of fairnessisvy-freeness: No player wishes
to switch the portion of the cake received with another pfaymortion. Despite intense efforts
in the past, it is still an open question whether therefisite boundednvy-free cake-cutting
protocol for an arbitrary number of players, and even for foayers.

We introduce the notion of degree of guaranteed envy-fiee(GEF) as a measure of
how good a cake-cutting protocol can approximate the ideéahay-freeness while keeping
the protocol finite bounded (trading being disregarded). pMgose a new finite bounded
proportional protocol for any number > 3 of players, and show that this protocol has a
DGEF of 1+ [r°/2]. This is the currently best DGEF among known finite boundée @autting
protocols for an arbitrary number of players. We will make gase that improving the DGEF
even further is a tough challenge, and determine, for coimparthe DGEF of selected known
finite bounded cake-cutting protocols.

arXiv:0902.0620v5 [cs.GT] 19 Oct 2009

1 Introduction

Fair allocation of goods or resources among various agsrgsentral task in multiagent systems
and other fields. The specific setting where just one divgsibsource is to be divided fairly is
commonly referred to as cake-cutting, and agents are galidgers in this setting. Research in the
area of cake-cutting started off in the 1940s with the piongework of Steinhaus [Ste48] who,
to the best of our knowledge, was the first to introduce thélpro of fair division. Dividing a
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good (or a resource) fairly among several players such #udit ef them is satisfied with the portion
received is of central importance in many fields. In the l@syé&ars this research area has developed
vividly, spreading out into various directions and with hgpgtions in areas as diverse as economics,
mathematics, computer science, and psychology. While dimeg of this research seek to find
reasonable interpretations of what “fairness” really dtafor and how to measure lit [Fol67, FK74,
Cha86], others are concerned more with proofs of existenicemossibility theorems regarding fair
division [Var74,[Wel85| Aki95], or with the development ofw cake-cutting procedures [BT95,
Str80,/ RW93| BB04] and, relatedly, with the analysis of tremplexity relative to both upper
and lower bounds [MIBKO3, WSOV, Prad09]. Since cake-cutpingcedures involve several parties
(namely, the players), they are also referred to as “prdédco

Cake-cutting protocols aim at achievindadr division of an infinitely divisible resource among
n players, who each may have different preferences for (amsl different valuations of) different
parts of the resource. In this paper, we focus on (a notiorfaifjiess in finite bounded cake-
cutting protocols. Many cake-cutting protocols are knoaualy, both finite and continuous ones.
While afinite protocol always provides a solution after only a finite numifedecisions have been
made, acontinuousprotocol could potentially run forever. Among finite protd&; one can further
distinguish between bounded and unbounded ones. Alfioiadedcake-cutting protocol is present
if we know in advance that a certain number of steps (that negedd on the number of players)
will suffice to divide the resource fairly—independentlyhmiw the players may value distinct parts
of the resource in a particular case and independently oftila¢egies chosen by the players. In
contrast, in finiteunboundedcake-cutting protocols, we cannot predict an upper bountham
many steps will be required to achieve the same goal. Ainorepply cake-cutting procedures to
real-world scenarios, it is important to develop fante boundedcake-cutting protocols. In this
context, “fairness” is often interpreted as meaning “efregness.” A division ienvy-freeif no
player has an incentive to switch his or her portion with tbeipn any other player received.

Steinhaus[[Ste49] proved that for any number of players aty-Bpe division of a single
divisible good always exists. However, the current statéhefart—after six decades of intense
research—is that for arbitrany, and even foin = 4, the development dfnite boundedenvy-free
cake-cutting protocols still appears to be out of reach,abitj challenge for future research. For
n > 3 players, hardly any envy-free cake-cutting protocol ievin, and the ones that are known
are either finite unbounded or continuous (see, €.0., [BIRY897,[BTZ97]). Though, from an
implementation perspective, finite bounded protocolslaehes that are most desirable. Recently,
Stromquist([[StrO7] has shown that for more than two playleeset is no finite cake-cutting protocol
that provides an envy-free division when all portions aopned to consist of contiguous pieces.

Our goal in this paper is to look for compromises that can beenveith respect to envy-freeness
while keeping the protocol finite bounded: We propose anaamir to evaluate finite bounded (yet
possibly non-envy-free) cake-cutting protocols with exdpo their “degree of guaranteed envy-
freeness” (DGEF). Informally put, this notion provides aamare of how good such a protocol can
approximate the (possibly for this particular protocoleashable) ideal of envy-freeness in terms
of the number of envy-free-relations that are guaranteexigi even in the worst case.

This paper is organized as follows. After defining some bastmons in Sectiohl2, we introduce
the notion of degree of guaranteed envy-freeness, andfgphei DGEF for some well-known
finite bounded proportional cake-cutting protocols in #edf. In Sectiorl ¥ we present a new



finite bounded proportional cake-cutting protocol with arhaced degree of guaranteed envy-
freeness, compared with the proportional protocols meatian Sectiof]3. This new cake-cutting
protocol makes use of parallelization in order to includenasy matching valuations (in terms of
not raising envy) as possible. Sectldn 5 briefly describeselhprotocols mentioned in Sectioh 3,
and determines their degree of guaranteed envy-freenasa wetailed analysis. In Sectioh 6,
we compare the DGEF approach with related work, and showevett small steps toward the
development of cake-cutting protocols with an enhanced B@Ee of significance. Finally, we
conclude in Sectionl 7 that our approach extends the scoplesfaievelopment of new finite bounded
cake-cutting protocols by “approximating” envy-freenasstead of insisting on it.

2 Preliminaries and Notation

Cake-cutting is about dividing a cake into portions thatassigned to the players such that each
of them feels, according to his or her individual valuatidrtte portions, to have received a fair
amount of the cak& The cake is assumed to be infinitely divisible, and can belddvinto arbitrary
pieces without losing any of its value. Moreover, we assumeectke to be heterogene@ﬂihis
assumption can be made without loss of generality, as argrcatting protocol providing a “fair”
division of a heterogeneous resource can be applied in the sy to a homogeneous one [BT96].
Givenn players, cake€ is to be divided intan portions that are to be distributed among the players
SO as to satisfy each of them. A portion is not necessarilynhglsipiece of cake but rather can
be a collection of disjoint, possibly noncontiguous piece€. Furthermore, all players may have
different individual valuations of the single pieces of ttake. For example, one player may prefer
the pieces with the chocolate topping, whereas anotheeplagy prefer the pieces with the cherry
topping.

More formally, cakeC is represented by the unit interv@l 1] of real numbers. By performing
cuts,C is divided intom piecescy, 1 < k < m: Each playem;, 1 <i < n, assigns value;(cx) =
Vi (X, Yk) to piececk C C, wherecy is represented by the subinteryal, yk] C [0,1] andp;’s valuation
functionv; maps subintervals d0, 1] to real numbers if0, 1]. We require each valuation function
v; to satisfy the following properties:

1. Normalization: y(0,1) = 1.
2. Positivity@ For allcy C C, ¢« # 0, we havevi(cc) > 0.

3. Additivity: For allcg,c, C C, ek, = 0, we havev;(c) + Vi(cr) = vi(ckUCy).

1As is common, “cake” will be used as a metaphor for the resoardhe good to be divided.

2Consider, for example, a cake with cherry, chocolate, aravierry toppings. A player may value, say, the pieces
with strawberry toppings higher than those with cherry togg.

3The literature is a bit ambiguous regarding this assumpt8ome papers require the players’ values for nonempty
pieces of cake to bronnegative(i.e., vi(ck) > 0) instead of positive. For example, Robertson and Webb [8\&ad
Woeginger and Sgall [WS07] require nonnegative values émempty pieces of cake, whereas positive values for such
pieces are required by Brams and Taylor [BIT96], Brams, JaresKlamler[[BJKO7], and Weller [Wel85].



4, Divisibility:H For all ¢ C C and for eachl, 0 < a < 1, there exists som& C ¢ such that
Vi(Cr) = a - vi(Ck).

Note that, to simplify notation, we writ& (X, yk) instead ofv; ([, y«]) for intervals[x, y«]  [0,1].
Due to Footnot€l4, no ambiguity can arise. For exchl C [0, 1], define||[x,y]|| =y —x. For any
real numbex, |x| denotes the greatest integer not exceedjrand|x] denotes the least integer not
smaller tharx.

The assumption th& is heterogeneous formally means that subinterval(,df having equal
size can be valued differently by the same player. Moreadistinct players may value one and
the same piece of the cake differently, i.e., their indigldualuation functions will in general be
distinct. Every player knows only the value of (arbitrary@ges ofC corresponding to his or her
own valuation function. Players do not have any knowledgriaithe valuation functions of other
players.

A division of Cis an assignment of disjoint and nonempty portiéns C, whereC = i, Cj =
Uk~ C«, to the players such that each playgreceives a portio€; C C consisting of at least one
nonempty piecex C C. The goal of a cake-cutting division is to assign the poditmthe players
in as fair a way as possible. There are different intergaetaf though, of what “fair” might mean.
To distinguish between different degrees of fairness, ¢hieviing notions have been introduced in
the literature (see, e.g., Robertson and Webb [RW98]):

Definition 2.1 Let w,v»,...,V, be the valuation functions of the n players. A division ofecak
C = U, Ci, where Gis the ith player’s portion, is said to be:

1. simple fair(a.k.a.proportiona) if and only if for each i1 <i < n, we have NC;) > /n;
2. strong fairif and only if for each i1 <i < n, we have NC;) > 1/n;
3. envy-freeif and only if for each i and j1 <i,j <n, we have {C;) > vi(Cj).

A cake-cutting protocol describes an interactive procedar obtaining a division of a given
cake, without having any information on the valuation fumes of the players involved. Each
protocol is characterized by a set of rules and a set of giestésee, e.g., Brams and Taylor [BT96]).
The rules just determine the course of action, such as asetueut the cake, whereas the strategies
define how to achieve a certain degree of fairness, e.g.,\bgiad the players where to cut the cake.
If all players obey the protocaol, it is guaranteed that ev@ayer receives a “fair” portion of the
cake. Cake-cutting protocols are characterized accotdirige degree of fairness of the divisions
obtaine

Definition 2.2 A cake-cutting protocol is said to lmple fair(or proportiona), strong fair and
envy-free respectively, if every division obtained (i.e., regasdie@f which valuation functions the
players have) is simple fair (or proportional), strong faand envy-free, respectively, provided that
all players follow the rules and strategies of the protocol.

“4Divisibility implies that for eachx € [0,1], vi (x,x) = 0. That is, isolated points are valued 0, and open intenals h
the same value as the corresponding closed intervals.

5In addition to the fairness criteria given here, other fessicriteria may be reasonable as well and have been proposed
in the literature (see, e.g., Robertson and Webb [RW98])).
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Apparently, every division obtained by either a strong taike-cutting protocol or by an envy-
free cake-cutting protocol is simple fair as well (i.e., gvetrong fair or envy-free cake-cutting
protocol can be classified as being simple fair, too). Moeeoevery simple fair cake-cutting
protocol can easily be applied to the case when there areuahsbares to be assigned, though
with respect to rational ratios only. Informally speakitigis can be done by cloning players and
their valuation functions so as to have in total as many piage the smallest common denominator
specifies (see, e.g., [RW98]).

3 Degrees of Guaranteed Envy-Freeness for Proportional Ptocols

As mentioned in the introduction, the design of envy-freleeeautting protocols for any numbaiof
players seems to be quite a challenge. rirgr3 players, a number of protocols that always provide
envy-free divisions have been published, both finite (bedndnd unbounded) and continuous
ones [Str80, BT96, RW98, BB04]. However, to the best of ounvidedge, up to date no finite
bounded cake-cutting protocol far> 3 players is known to always provide an envy-free division.
For practical purposes, it would be most desirable to fiante boundedtake-cutting protocols that
always provide divisions as fair as possible. In this regiid questionable whether the advantage
of always having an envy-free rather than just a proportidivésion would be big enough to justify
the lack of finite boundedness. It may be worthwhile to be eontvith a certain lower degree of
envy-freeness, rather than insisting on complete enwniss, for the benefit of having a finite
bounded protocol in exchange.

In this paper, we propose an approach that weakens the dami@wy-freeness for the purpose
of keeping protocols finite bounded. On the one hand, in 8&&i2 we are concerned with known
simple fair (i.e., proportional) cake-cutting protocofst are finite bounded, and determine their
degree of guaranteed envy-freeness, a notion to be inteddincSection 3]1 (see Definitibn_3.2).
On the other hand, in Sectibh 4 we propose a new finite boundgubgional cake-cutting protocol
that—compared with the known protocols—has an enhanceeeej guaranteed envy-freeness.

3.1 Degrees of Guaranteed Envy-Freeness

When investigating the degree of envy-freeness of a caltagiprotocol forn players, for each
playerp;, 1 <i < n, the value of his or her portion needs to be compared to theegaif then— 1
other portions (according to the measure of plap;e Thus,n(n— 1) pairwise relations need to
be investigated in order to determine the degree of envgnfss of a cake-cutting protocol for
players. A playemp; envies another playgyj, 1<i,j <n,i# j, whenp; prefers playep;’s portion
to his or her own. Ifpg; enviespj, we call the relation fronp; to p; anenvy-relation otherwise, we
call it anenvy-free-relation

Definition 3.1 Consider a division of cak€ = | ;C; for a setP = {py, pz,..., pn} Of players,
wherey; is p;’s valuation function and; is p;’s portion.

1. Anenvy-relation for this divisiorfdenoted byt) is a binary relation orf?. Playerp; envies

6We will use “valuation” and “measure” interchangeably.

5



playerpj, 1<i,j <n,i# j, ifand only ifvi(C) < vi(Cj). We writep; I p;.

2. Anenvy-free-relation for this divisiodenoted by¥) is a binary relation o®. Playerp; does
not envy playemp;, 1 <i,j <n,i# j, ifand only ifv;(C;) > v;(Cj). We write p; ¥ p;.

The following properties of envy-relations and envy-fretations are worth mentionirEbNo
player can envy him- or herself, i.e., envy-relations arefliexive: The inequality;(Ci) < vi(Ci)
never holds. Thus, we trivially have thg{C;) > v;(C;) always holds. However, when counting
envy-free-relations for a given division, we will disredahese trivial envy-free-relationg ¥ p;,

1 <i < n, throughout the paper.

Furthermore, neither envy-relations nor envy-free-ietest need to be transitive. This is due
to the fact that each player values every piece of the caker@iog to his or her own valuation
function. The valuation functions of different players Mai¢ distinct in general. For example, given
three distinct playerg;, pj, and px with valuationsv;(C;) < vi(Cj) andv;(C;) < v;(Ck), we have
that p; I- p; and p; IF p«. However, these valuations do not provide any informatiooua player
pi’s valuation of portiorCy, so we cannot conclude thgtl- px. An analogous argument applies to
envy-free-relations.

The above observations imply that envy-relations and dreg~relations are either one-way or
two-way, i.e., it is possible that:

1. two players envy each otheg; (- p; andp; I- p;), which we refer to as “two-way envy,”

2. neither of two players envies the other ¢ p; and p; ¥ p;), which we refer to as “two-way
envy-freeness,” and

3. one player envies another player but is not envied by thisrglayer i I- p; and p; ¥ pi),
which we refer to as both “one-way envy” (fropato p;) and “one-way envy-freeness” (from

pj to pi).

Assuming that all players are following the rules and stiig® some cake-cutting protocols
always guarantee an envy-free division (i.e., they always &én envy-free division of the cake),
whereas others do not. Only protocols tgaaranteean envy-free division ireverycase, even
in the worst case (in terms of the players’ valuation funtdo are considered to be envy-free.
Note that an envy-free division may be obtained by coinadenust because the players have
matching valuation functions that avoid envy, and not bseaenvy-freeness is enforced by the
rules and strategies of the cake-cutting protocol usechdmiorst case, however, when the players
have totally nonconforming valuation functions, an ensgef division would not just happen by

"various analogs of envy-relations and envy-free-relatibave also been studied, from an economic perspective,
in the different context of multiagent allocation of indiible resources. In particular, Feldman and Weiman [FW79]
consider “non-envy relations” (which are similar to our inatof envy-free-relations) and mention that these are not
necessarily transitive. Chauduri [Cha85] introduces $eralations” and mentions that these are irreflexive and not
necessarily transitive. Despite some similarities, thetions differ from ours, both in their properties and in tisey
properties holding for their and our notions are proven. é&ample, Chauduri [ChaB5] notes that mutual envy cannot
occur in a market equilibrium, i.e., in this case his “enejations” are asymmetric, which is in sharp contrast to ey
envy being allowed for our notion.



coincidence, but needs to be enforced by the rules and gitratef the protocol. An envy-free-
relation is said to bguaranteedf it exists even in the worst case.
We now define the degree of guaranteed envy-freeness iioretatthe problem of cake-cutting.

Definition 3.2 For n > 1 players, thedegree of guaranteed envy-freendBsGEF, for short) of
a given proportionl cake-cutting protocol is defined to be the maximum numbermgf/dree-
relations that exist in every division obtained by this poatl (provided that all players follow the
rules and strategies of the protocol), i.e., the DGEF (wlscbxpressed as a function of is the
number of envy-free-relations that can be guaranteed evéreiworst case.

By a slight abuse of notation, we will sometimes speak of thmlmer of guaranteed envy-
free-relations (rather than of the guaranteed number of-&ee-relations). When we do so, let us
remind the reader that what matters is th&&l numberof envy-free-relations that exist in the worst
case, and not thidentificationof specific envy-free-relations. Moreover, for techniegdsons (see
the proof of Lemma}5]5), we also consider the case that teayely one player (i.en = 1). Note,
however, that in this case the DGEF of any cake-cutting padtg trivially zero, since we disregard
the trivial envy-free-relatiorp, ¥ ps.

Definition[3.2 is based on the idea of weakening the notiomioféss in terms of envy-freeness
in order to obtain cake-cutting protocols that are fair (tio perhaps non-envy-fre@nd finite
bounded, where the fairness level of a protocol is given ©gdégree of guaranteed envy-freeness.
The higher the degree of guaranteed envy-freeness the thagr@rotocol.

3.2 Degrees of Guaranteed Envy-Freeness in Proportional ®a-Cutting Protocols

We now give an upper and a lower bound on the degree of guarhatey-freeness for proportional
cake-cutting protocols. For comparison, note that FeldarahKirman [[EK74] observed that, for
anydivision, the number of envy-relations is always betweeaw aadn(n— 1); zero if everyone is
happy with his or her share of the cake, anjd— 1) if everyone is envious of everyone else.

Proposition 3.3 Let d(n) be the degree of guaranteed envy-freeness of a proporteaie-cutting
protocol for n> 2 players. It holds that i< d(n) < n(n—1).

Proof. If n= 2 then we obviously have(2) = 2, and this will be the case exactly if both players
value their share of the cake as being at Ié&stNote that this casey= 2 = d(n), reflects the fact
that every proportional protocol for two players is envger

So, we now assume that> 3. As stated above, we disregard the trivial envy-freeticaia
pi ¥ p; for eachi, 1 <i < n. Consequently, each player can have at mestl envy-free-relations,
one to each of the other players, which gives a total of at mgst- 1) guaranteed envy-free-
relations. This proves the upper bouri{n) < n(n—1).

To prove the lower bound, note that, by definition, in a prdipael division every playep;, 1 <
i <n, regards his or her portion being of value at ldasti.e.,v;(C;) > 1/n. Thus,v;(C—C;) < (—1)/n

8The DGEF should be restricted to proportional protocoly,osince otherwise the DGEF may overstate the actual
level of fairness, e.g., if all the cake is given to a singkeypt.



for eachi. We will now prove that this implies that none of the playeas @nvy each of the— 1
other players at the same time. We show this for platethe argument is analogous for the other
players. So, assume that envies some other player, spy. Thusvi(Cy) > v1(Cq) > Y/n. It follows
that p; values the remaining caK€ — C;) — C; as being less thain-2)/n, i.e.,v1((C—C;1) —Cy) <
(—2)/n. Consequently, there is no way to divide the remaining ¢&keC,;) —C, into n— 2 portions
Cs,Ca,...,Cy such that for each 3 <i < n, we havev;(Ci) > Y/n. Hence, there must be at least one
player pj, 3 < j < n, such that(Cj) < 1/n <vi(Cy), sopy ¥ pj. Considering alh players, this
gives at leash guaranteed envy-free-relations for a proportional praffcgod(n) > n. O

The degree of fairness of a division obtained by applyingapertional cake-cutting protocol
highly depends on the rules of this protocol. Specifying eochmitting to appropriate rules often
increases the degree of guaranteed envy-freeness, witeaedask of such rules jeopardizes it in the
sense that the number of guaranteed envy-free-relatiogmbmited to the worst-case minimum
of n as stated in Propositidn _3.3. In this context, “appropriaies” are those that involve the
players’ evaluations of other players’ portions and of pgethat still are to be assigned. Concerning
a particular piece of cake, involving the evaluations of amyplayers as possible in the allocation
process helps to keep the number of envy-relations to béetkéaw, since this allows to determine
early on whether a planned allocation may later turn out tdibedvantageous—and thus allows to
take adequate countermeasures. In contrast, omittingainesaluations means to forego additional
knowledge that could turn out to be most valuable later on.

For example, say playes is going to get assigned piecg If the protocol asks all other players
to evaluate piece; according to their measures, all envy-relations to be ecely the assignment
of piecec; to playerp; can be identified before the actual assignment and thus ewoeasures
(such as trimming piece;) can be undertaken. However, if the protocol requires ntuatians on
behalf of the other players, such envy-relations cannotlbetified early enough to prevent them
from happening.

Lemma 3.4 Let a proportional cake-cutting protocol forn 2 players be given. If the rules of the
protocol require none of the players to value any of the offlayers’ portions, then the degree of
guaranteed envy-freeness is n (i.e., each player is gueeahonly one envy-free-relation).

Proof. Having a certain number of guaranteed envy-free-relatinesins to have at least this
number in any case, even in the worst case.r=er2, proportionality implies envy-freeness, so the
worst case is the best case. or 3 players, consider the following scenario. Given a divisid
cakeC = i, G, without any restrictions other than aiming at a proposiativision (i.e., the rules
of the protocol require none of the players to value any ofafer players’ portions), we set the
valuation functions of the players as follows. For each<i < n, playerp; values portiorC; to be
worth exactlyn/n? = 1/n, p; values exactly one portio@;, i # j, to be worth exactly/n? < 1/n, and

pi values each of the— 2 remaining portion€&, ||{i, j,k}|| = 3, to be worth exactlyn+1)/n2 > 1/n.
These valuations make this division proportional, as eywayer values his or her portion to be
worth exactlyl/n. Moreover, each player has— 2 envy-relations and just one guaranteed envy-
free-relation, the latter of which is due to Proposifion 34&nce, if the rules of the protocol require
none of the players to value any of the other players’ postidhen no more than envy-free-
relations can be guaranteed by the given proportional cakeig protocol in the worst casd.l
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The argument in the proof of Lemnia B.4 will be used to prove upper bounds on the
DGEF of the proportional cake-cutting protocols considéreTheorent 3.5 (see also Lemnias] 5.1
through5.6) and Theorerhs 4.2 4nd 4.9.

An envy-free cake-cutting protocol farplayers guarantees that no playgrenvies any other
player pj, i.e.,vi(Ci) > vi(C;) for all i, j with 1 <1, j < n, in each divisionC = (J{_, C; obtained
by this protocol. This is the case exactly if the protocol tegbe upper bound on the degree of
guaranteed envy-freeness given in Propositioh 3.3. Thatdake-cutting protocol far> 2 players
is envy-free (or completely fair) exactly if the degree obganteed envy-freeness equala — 1).

Our next result shows the DGEF for a number of well-knowndiibundegroportional cake-
cutting protocolg For the sake of self-containment, these protocols will keedbed in Sectiohl5.

Theorem 3.5 Forn> 3 player@ the proportional cake-cutting protocols listed in Tabledvk a
degree of guaranteed envy-freeness as shown in the saree tabl

The proof of Theorerh 315 can be found in Secfidbn 5. In paricuhe proofs of Lemmads 5.1
through 5.6 provide the details of the analysis yieldingvhleies in the DGEF column of Taklé 1.

\ Protocol | DGEF | Established vig
Last Diminisher[[Ste48] 2+4n(n-1)/2 Lemmd5.1
Lone Chooser [Fin64] n Lemmd5.2
Lone Divider [Kuh67] 2n—-2 Lemmd5.B
Cut Your Own Piece (no strategy) [St&69] n Lemmd5.4
Cut Your Own Piece (left-right strategy) 2n—2 Lemmd5.4
Divide and Conquer [EP84] n-|logn| 4 2n— 29+ I | emmd5.b
Minimal-Envy Divide and Conquef [BJKO7] n- |logn| 4 2n—2l09n+1 | | emmd5.5
Recursive Divide and Choose [Ta$03] n Lemmd5.6

Table 1: DGEF of selected finite bounded cake-cutting pasoc

Apparently, the degrees of guaranteed envy-freeness opriitecols listed in Tabl€l1l vary
considerably. Although each of the protocols may providemwy-free division in the best case,
in the worst case some of them show just the minimum numbeuafagteed envy-free-relations
according to Propositidn 3.3, while others possess a signifiy higher degree of guaranteed envy-
freeness. These differences can be explained by the fadh#se protocols have been developed
with a focus on achieving proportionality, and not on maxiimg the degree of guaranteed envy-
freeness. However, this indicates a new direction for utesearch, namely to increase the number
of guaranteed envy-free-relations while ensuring finitertedness. In the next section, we take a
first step in this direction.

9These protocols may also be known under different names.

10The trivial casesh = 1 (where one player receives all the cake) ang 2 (where each proportional division is
always envy-free) are ignored. Specifically, an envy-fiaed(thus proportional) division for = 2 players can always
be obtained by applying the cut-and-choose protocol: Oageplcuts the cake into two pieces both of which he or she
considers to be worth exactly one half of the cake, and thergitayer chooses the piece that he or she considers to be
worth at least half of the cake.



4 Enhancing the Degree of Guaranteed Envy-Freeness

In this section, we introduce a finite bounded cake-cuttingtqeol that, compared with the
protocols in Tabléll, improves upon the degree of guaranteey-freeness. We will prove that
this protocol is proportional and strategy-proof, and thaan be adapted so as to even provide a
strong fair division. To present the protocol and its prdipsrin an accessible way, we first handle
the case oh = 4 players separately in Sectibnl4.1, before presenting maalyzng it for arbitrary

n > 3 in Sectio 4.P.

4.1 A Proportional Protocol with an Enhanced DGEF for Four Players

Figure[1 gives a finite bounded proportional cake-cuttingtqarol for four players. We give both
the rules and the strategies at once. Note that the playeestbdollow the rules and strategies in
order to obtain a proportional share of the cake in any case.

The protocol in Figuré€ll always provides a proportional simi (see Theoreifn 4.1) and has
ten guaranteed envy-free-relations (see Thedrem 4.2).lldw aomparison for four players, the
best DGEF of any of the proportional protocols listed in &bl (see also Sectidd 5)—namely,
that of both the Divide and Conquer protocols and the Lastilisher protocol—is eight. Note
that a maximum number of twelve guaranteed envy-freeioglatis possible for four players (and
this would give envy-freeness). Moreover, the protocol banproven to be strategy-proof (see
Theoreni 4.14), and to even yield a strong fair division, piledi that exactly one player makes a
mark in Step 1 of the protocol that is closest to 1 (see The@&n

Steps 4 through 12 of the protocol in Figlide 1 (which is the p&the protocol when there
are just three players left) is simply the Selfridge—Con\paytoco We explicitly describe the
Selfridge—Conway protocol here for the sake of self-coment. Note that the Selfridge—Conway
protocol is also part of the more involved protocol for anitagioy number of players, which will be
presented as Figuré 3 in Sectlonl4.2.

Theorem 4.1 The cake-cutting protocol in Figufé 1 is proportional.

Proof. Since all three players entering Step 4 consider the podfotie fourth player (who
dropped out in Step 3) as being worth no more thanthe Selfridge—Conway protocol is applied
to a part of the cake that all three involved players considdoeing worth at leagts. Thus, since
the Selfridge—Conway protocol is an envy-free (hence, miqadar, a proportional) protocol, it by
definition guarantees each of the three players enterinpd3igortion of value at leasts according
to their measures. Moreover, the player who dropped outep Stconsiders his or her portion to
be worth1/4 due to Step 1. Therefore, the cake-cutting protocol in Eflialways provides a
proportional division fom = 4 players. O

Theorem 4.2 The cake-cutting protocol in Figufé 1 has ten guaranteed/dree-relations.

11The Selfridge—Conway protocol is known to be a finite bouneedy-free cake-cutting protocol for= 3 players
(see Stromquist [Str80] and also, e.g., [BN95, BT96, RW98])
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Input:

Output:

Step 1.
Step 2.

Step 3.

Denote the remaining players Ipy, po, andps, without loss of generality, and Igt be
pi’s valuation function.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

If trimmings have been made in Step 5, continue with Steplrmtise finished.

Step 9.

Step 10.
Step 11.

Step 12.

CakeC, and four playergs, p2, p3, P4, Wwherep; has the valuation function.
Note that the value of cake is normalized such that(C) =1, 1<i < 4.
Mapping of portion<C; to playersp;, whereC = Uf‘:lci.

Let each playep;, 1 <i <4, make a mark aty € C, such that;(m;, 1) = /4.
Find any playerp; such that there is no playgg, 1 < j,k <4, j # K, with
I|[my, 1]|| < ||[m;,1]]|. (Ties can be broken arbitrarily.)

Assign portionC; = [m;, 1] to playerp; and letp; drop out.

Let playerp; cut [0,m;] into three pieces, say, ¢y, andc,, of equal value
according tov;.

If vo(Cx) > Vo(Cy) andva(cx) > Vo(C;), {X,y, 2} = {1,2,3}, let playerp, trim
piececy into piecec; and trimmingsk such thatvx(c)) = va(cy) > va(c,) or
Vo(Cy) = Va(Cz) > Vo(cy). If there already exists a two-way tie for the mg
valuable piece according te, do nothing.
Let playerps choose one of the three pieaggrespectivelyc, if c, has been
trimmed),cy, or c; that is most valuable according ve.

St

Let player p, choose one piece from the two remaining pieces that is most

valuable according t@,. If ¢, is among the remaining pieces, play®grhas
to choose this one.
Assign the remaining piece to playpr.

Either playerp, or playerps received the trimmed pieag. From these two

let the player not having receivey cut R into three equal pieces according

to his or her measure.

Let the player having receiveg] choose one of these three pieces that is most

valuable according to his or her measure.
Let playerp; choose one out of the two remaining pieces that is most viau
according tov;.

Assign the remaining piece to the player that Rut

Proof.

11

ab

Figure 1: A finite bounded proportional cake-cutting pratoeith DGEF of 10 for four players.

The DGEF of the protocol in Figufd 1 can be justified analobotsthe arguments in
the proof of Theorem 411. Because the Selfridge—Conwaypobtalways provides an envy-free
division, there is no envy between the three players emétep 4, which results in six guaranteed
envy-free-relations. In addition, the same three playeliswat envy the player (call him or hep;)
who dropped out in Step 3 with portiddy, since none of them valued porti@) as being worth
more thanl/4 and each of them is guaranteed a share of at [@&3(3/4) = 1/4, which gives three
more guaranteed envy-free-relations. Simply put, nonkefhiree players entering Step 4 will envy
any of the three other players, summing up to nine guarameegree-relations. By the argument
in the proof of Proposition_3l3, no more envy-free-relasiaman be guaranteed on behalf of these



three players. The last guaranteed envy-free-relationesta playerp;: Since the protocol always
provides a proportional divisiorp; cannot envy each of the three remaining players (again by the
proof of Propositior_3]3). However, it cannot be guarantidedp; does not envy any of the other
two remaining players either, singg does not evaluate their portions. This follows from the proo
of Lemm Thus, the protocol shown in Figuré 1 has a DGEF of exactlyrenotal. O

Thinking of manipulation aspects, there may be players widot gain most of the cake for
themselves, or who intentionally try to make other playerdaus. To prevent this from happening,
cake-cutting protocols should be strategy-proof.

Definition 4.3 A proportional cake-cutting protocol is said to brategy-prooff a cheating player
is no longer guaranteed a proportional share, whereas dieotplayers are still guaranteed to
receive their proportional share.

In a strategy-proof proportional protocol, a cheater (eeplayer who doesn’t play truthfully)
cannot harm any of the other players with respect to propamatity, and may even jeopardize
receiving a proportional share of the cake for him- or hérsel

It is worth noting that the definition of strategy-proofnésslightly stronger when restricted to
envy-freecake-cutting protocols. An envy-free cake-cutting protas said to be strategy-proof if a
cheating player is no longer guaranteed to not envy any @llager, whereas all other players are.
That s, a strategy-proof envy-free cake-cutting protégoésistant to manipulation in the sense that
for a player to beyuaranteedo not envy any other player, he or she is required to playfully.

Theorem 4.4 The proportional cake-cutting protocol in Figué 1 is segy-proof in the sense of
Definition[4.3.

Proof. When analyzing the strategy-proofness of the protocol gufé1, only decisions made
in Steps 1 through 3 need to be considered, since the SeHi@ighway protocol has already been
proven to be strategy-proof (see, elg., [BIT96]). So, in editche following three cases, we thus will
consider only Steps 1 through 3 of the protocol. Moreoves &ssumed that there is exactly one
cheater (i.e., one player not playing truthfully) that rg to get more than a proportional share,
call him or herpe, 1< c<4.

Case 1: If pc is the player to drop out in Step 3 with porti@ = [m, 1], ve(m¢, 1) > /4, then
the cheater would receive more than a proportional sharerdiog to his or her measure.
However, all other players are still guaranteed a propoalishare, since all of them consider
portion C; as being worth at mosys according to their measures, so they all consider the
remaining part of the cake to be worth at le¥st

12More specifically, consider the following scenario. Supptiee fourth player dropped out in Step 3 (se 4), and
p4 values his or her portiof, to be worth exactlyl/4 and the remaining cak®, my] to be worth exactlys/4. If we
set the valuation functions such tha{C;) = v»(Cy) = v3(C3z) = 1/4, v4(C1) = 1/8, andvy(Cp) = va4(Cs) = 5/16 (thus,
V4(C1) +v4(C2) 4 v4(C3) = 3/4), dividing cakeC into Cy, Cy, Cg, andCy results in a proportional division such that player
p4 envies playerg, and ps.

12



Case 2: If the cheaterp;, would have dropped out in Step 3 with portiGp= [m., 1] when telling
the truth (i.e.vc(me, 1) = Y/4andv;(m, 1) < /awith 1 <i <4 andi # c) but now is not (since
pc makes a mark aty, with m, < m), then the cheater may end up with even less thian
Let us see why this is true. In this case, another plaggrdrops out in Step 3 with portion
C;j = [m;, 1], whereny, < m; < m, which determines the subpart of the cake for Step 4 and the
following steps to b0, m;]. According to the measure of the cheater, subj@an;] is worth
at most3/4, since he or she valugs);, 1] as being worth at leasts, as assumed beforehand.
Applying the Selfridge—Conway protocol to subpfim;] guarantees each of the involved
players at least a proportional share, which results forctteater in a portion that may be
worth even less thaft/s)(3/4) = 1/ (namely, ifm; < mc). (Note that this is the point where
the cheater loses his or her guarantee for a proportiones siecheating.)

Again, all other players are still guaranteed a proporfishare. The player receiving portion
C; = [m;, 1] values this portion as beinga. The two remaining players both value subpart
[0,m;] to be worth at leas8/4, and thus receive a portion that is worth at legigs)(3/4)
according to their measures.

Case 3: If the cheater does not drop out in Step 3 by cheating, noravoave dropped out in Step 3
if he or she would have been truthfully, then this would ndiuience the division at all. The
player dropping out in Step 3 with portid®, = [m;, 1] values this portion as beirigs, and
the remaining players receive a proportional share of stiypran;], which all of them value
at leas®/s, even the cheater.

This concludes the proof of Theorém#.4. O

Moreover, just a little change in the procedure can makeribepol presented above to provide
not just a simple fair but a strong fair division for four pkag, which means that every player
considers the portion received to be worth strictly morethiae quarter ot.

Theorem 4.5 The cake-cutting protocol in Figufd 1 can be modified so asigya strong fair
division, provided that exactly one player makes a mark @pS3tthat is closest té (with respect
to the interval[0, 1]).

Proof.  Figure[2 shows only the modified steps of the protocol in Fédlithat are required to
achieve a strong fair division.

Let p; be the unique player whose mark in Step 1 is closest to 1. Aougrto Step 2 in
Figurel2, letpk be any player such thdfm;, 1]|| < ||[m, 1]|| and there is no playes, 1< j k¢ < 4,
I{],k,£}|| = 3, with ||[my, 1]|| < ||[m,1]||, where ties can be broken arbitrarily. Step 3 in Figdre 2
assures that playgs; is dropping out with a portion that is worth strictly more tHgs according to
his or her measute] sincep; receives a portion that is bigger and thus is worth more tharohe
he or she has marked as being worth exalgdy The three remaining players continue by applying a
proportional protocol to a part of the cake that all of themsider to be worth strictly more th&u.

13Recall that we assumed the axiom of positivity, which reegimonempty pieces of cake to have a nonzero value for
each player, see also Footnpte 3.
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Thus, each of the players receives a portion that is worittlgtmore thanl/4 according to his or
her measure, which results in a strong fair division. O

Step 2. Find any playersp; and px such that||[m;,1]|| < ||[m,1]|] and there is no
player py, 1< j.k,¢ <4, [{j.k ¢} =3, with [m,1]|| < ||[m,1]||. (Ties
can be broken arbitrarily.)

Step 3. Setm= m+ (m-my/2 and assign portio€; = [m, 1] to playerp; and letp;
drop out.

Denote the remaining players Ipy, p2, andps, without loss of generality, and lgt be

pi’s valuation function.

Step 4. Let playerp; cut [0,m] into three pieces, sag, ¢, andc,, of equal value
according tov;.

Figure 2: Modified steps in the protocol of Figlte 1 to achiastrong fair division for four players.

4.2 A Proportional Protocol with an Enhanced DGEF for any Number of Players

Figure[3 shows a finite bounded proportional cake-cuttirggmol with an enhanced DGEF far
players, whera > 3 is arbitrary. Again, we give both the rules and the strat®gt once, and players
have to follow the rules and strategies in order to obtainapgrtional share of the cake. Unless
specified otherwise, ties in this protocol can be brokertrantiy. With respect to the DGEF results
of previously known finite bounded proportional cake-agtprotocols given in Tablgl 1 (see also
Sectiorb), the Last Diminisher protobhows the best results far> 6, whereas the best results
for n < 6 are achieved by the Last Diminisher protocol as well as fim#hDivide and Conquer
protocols [EP84, BJKO7]. The protocol presented in FiguienBroves upon these protocols in
terms of the degree of guaranteed envy-freeness for-alB and, in particular, improves upon the
DGEF of the Last Diminisher protocol by/2| — 1 additional guaranteed envy-free-relati%s.

Both the protocol in Figurg]l3 and the Last Diminisher protae, more or less, based on the
same idea of determining a piece of minimal size that is \hkseactlyl/n by one of the players
(who is still in the game), which guarantees that all othayets (who are still in the game) will
not envy this player for receiving this particular piece.wéwer, the protocol in Figufg 3 works in a
more parallel way, which makes its enhanced DGEFgt| + 1 possible (see Theordm #.9), and
it forbears from using trimmings. To ensure that working ipasallel manner indeed pays off in
terms of increasing the degree of guaranteed envy-fregties$nner loop” (Steps 4.1 through 4.3)
of the protocol is decisive.

In addition, the protocol in Figuifd 3 always provides a prtipoal division (see Theorem 4.7)
in a finite bounded number of steps (see Thedrer 4.8), it cagrdaen to be strategy-proof (in
the sense of Definition 4.3, see Theorlem 4.10), and analbgtushe modification described in

14This protocol has been developed by Banach and Knaster amflrsigpresented in Steinhalis [Ste48].

15Recall that we ignore the trivial casas= 1 andn = 2, see Footnofe 10. Moreover, in the special case-6f4 the
DGEF of the protocol in Figurgl 3 i§7/2) + 2 = 10 and thus improves the DGEF of the Last Diminisher protdgol
evenn/2 = 2 guaranteed envy-free-relations, see Thedrein 4.2.
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Section[4.11, this protocol can be adjusted to provide a gtfaim division for suitable valuation
functions of the players (see Theorem 4.11). All of the alreperties are shared also by the Last
Diminisher protocol (see, e.g., [RW98]).

Remark 4.6 Some remarks on the protocol in Figlile 3 are in order:

1. From a very high-level perspective the procedure is devi@: The protocol runs over several
rounds in each of which it is to find a playef who takes a portion from the left side of the
cake, and to find a playerygpwvho takes a disjoint portion from the right side of the cake,
such that none of the players still in the game enypippx (at this, appropriate “inner-loop
handling” might be necessary, see Figlide 3 for details). r€after, g and p are to drop
out with their portions, and a new round is started with thenegning cake (which is being
renormalized, see Remaikis 3 and 5 below) and the remainayg. Finally, the Selfridge—
Conway protocol is applied to the last three players in thenga

2. Note that this protocol is applied only if there are morarthwo players in total. If there is
just one player then he or she receives all the cake, andnéthee only two players then the
simple cut-and-choose protocol is applied (see Foothdje 10

3. Regarding n> 5 players, if at any stage of our protocol the same player méwtdh the
leftmost smallest piece and the rightmost smallest pidmecake may be split up into two
pieces and later on merged again. To simplify matters, i sucase the interval boundaries
are adapted as well, which is expressed in Step 8 of FigureirBpl$ put, the two parts of
the cake are set next to each other again to ensure a seaméesstion. This can be done
without any loss in value due to additivity of the playerduadion functions.

4. Note that if the inner loop (Steps 4.1 through 4.3) has manbexecuted in an outer-loop
iteration (Steps 1 through 8), we hape= p’. This is the special case of zero iterations of
the inner loop. Consequently, gf = p’ then the portion €= [pk, p] assigned to player
in Step 6 is the same ax € [pk, ] in the general case, and the values for= px and
C' := [A},p«] that are set in Step 8 in this case are special caseg Bf p — p’ + px and
C':=[Aj,p]U[p’,p] (since ifp = p’ then[p’, p] degenerates to a single point, which is
valued zero by the axiom of divisibility, see Footridte 4)wieeer, to make the protocol in
Figure[3 easier to comprehend, we have stated these spasias @xplicitly in addition to the
general case.

5. In Steps 1 and 9.1, the value of subcakeC is renormalized such that(€') = 1 for each
player p, 1 <i <s, for the sake of convenience. In more detail, each play&alpes C at
leasts/n of C, i.e., ¥(C') > (s/n) - vi(C). The latter holds true since each of the s players still
in the game values the union of the-s portions already assigned to be worth at mos#)/n
of C. Thus, by receiving a proportional share (valugg of C' each player pis guaranteed
at least a proportional share (valuegh) of C.

6. Note that Steps 9.1 through 9.3 of the protocol in Figure@8easpond to Steps 1 through 3
of the protocol in Figuré1l, and that Steps 9.1 through 9.4@egormed exactly if the initial
number n of players is even.

15



Input:
Output:
Initialization:

CakeC, andn playerspa, po, ..., pn, Wherep; has valuation function;.
Mapping of portion<C; to playersp;, whereC = (Ji' ; C.
SetA :=0,p:=1,p :=p,s:=n,andC" :=[0,1] =C.

While there are more than four players (i€ 4), perform the outer loop (Steps 1 through B).

Step 1.

Step 2.

Step 3.

If j #Kk, go directly to Step 5, else repeat the inner loop (Stepshddugh 4.3) untilp; and
pk are found such thag # k, where p; marks the leftmost smallest piece apgmarks the
rightmost smallest piece.

Step 4.1.
Step 4.2.

Step 4.3.
Step 5.
Step 6.

Step 7.
Step 8.

Perform Steps 9.1 through 9.4 if and only if there are fouyg@ia (i.e.s= 4). If there are three
players (i.e.s= 3), go directly to Step 10.

Step 9.1.
Step 9.2.
Step 9.3.

Step 9.4.
Step 10.

Let playersp;, 1 <i <'s, each make two marks & and p; with A;,p €
C’ such thatvi(A,A;)) = /s and vi(p;,p) = I/s; note thaty;(C') = 1 (see
RemarkK4.6.5).

Find any playem; such that there is no playgr, 1 < j,z<s, j # z with
A AN < (1AL Al

Find any playemy such that there is no playgr, 1 < k,z<s, k # z, with
Iz ]Il < |llpx, P]|- If more than one player fulfills this condition fa,
andp; is one of them, choosp, other thanp;.

Setp’ ;= pk.

Let playerspi, 1 <i <s, each make a mark g with p; € C’ such that
vi(pi, p') = Ys.

Find player px such that there is no playay,, 1 < k,z<'s, k # z with
Illez, P11l < IllPx, P']II- 1f more than one player fulfills this condition fau,
andpj is one of them, choosp, other thanp;.

Assign portionC; = [A, Aj] to playerp;.

If p = p’, assign portiorCy = [pk, p] to playerpy, else assign portiofy =
[ox, P’] to playerpk (see Remark 4l6.4).

Let playersp; and py drop out.

Adapt the interval boundaries of the remaining c&kéor the round / step tg
follow: If p=p’, setC’ := [Aj, px] andp := py, else se€’ := [Aj, p] U [p’, p]
andp := p —p’+ px (see Remarkis 4(6.3 ahd #16.4). 3et=A;, p’ :=p,
ands:=s—2.

Let eachp;, 1< i <s=4, make a mark gb; € C’ such that;(p;,p) = V/s=
1/4; note that;(C') = 1 (see Remark4@.5).

Find any playem; such that there is no playgk, 1 < j,k <s, j # k with
o, 011 < [0y, 11l

Assign portionC; = [pj, p] to playerp;. Let playerp; drop out.

Setp :=p;,C :=[A,p], ands:=s— 1.

Divide the remaining cak€ among thes = 3 remaining players via the
Selfridge—Conway protocol (as described in Steps 4 thrdigim Figure1).

Figure 3: A proportional protocol with an enhanced DGEF®f2] + 1 for n > 3 players.
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Theorem 4.7 The cake-cutting protocol in Figufé 3 is proportional.

Proof. In the case oh being even, all four players entering Step 9.1 cons@eat this stage to
be worth at least/n = 4/n of C, since each of them values the union of the 4 portions already
assigned to be worth at mast4)/n of C. The same argument can be applied to the three players that
enter Step 10 in the casembeing odd. Thus, from Step 9.1 on, which is the part when therao
more than four players left, the protocol provides a prapoal division according to Theorelm 4.1.

When there are more than four players in total, either therfirs4 players (ifn is even), or the
firstn— 3 players (ifn is odd), receive a portion they each value to be worth at l¢aatcording to
Steps 1 and 4.2, since each of these players receives arpoetior she once specified to be worth
exactlyl/s of C’, while valuingC’ at leasts/n of C (see Remark 416.5).

Thus, the cake-cutting protocol in Figure 3 always providesroportional division for any
numbem > 3 of players. O

Theorem 4.8 The cake-cutting protocol in Figufé 3 is finite bounded.

Proof. The protocol in Figurél3 has only a finite number of steps—ith loops though. The
outer loop (which repeats Steps 1 through 8 as long as thermare than either four players if
nis even, or three players if is odd) is iteratedn—4)/2 times if n is even, and is iterated-3)/2
times ifnis odd. The inner loop (which repeats Steps 4.1 through 4iBtwo distinct players are
found to which the two outermost pieces are assigned, onyempitaceiving that from the present
left and the other player receiving that from the presertitrlgpundary) is iterated at most- 2
times per outer-loop iteration withplayers, summing up to at mog“:"f)m (n—2i) iterations of
the inner loop in total. Let us see why this is true. For eadereloop iteration withs players,
the inner loop is iterated as long as the player that markedefttmost smallest piece also marks
the rightmost smallest piece (with respect to the currgtttiboundaryp’) and there is no tie with
another player for the rightmost smallest piece. With respeevery single playep;, 1 <i <,
when settingy;(C') = 1, the division ofC’ into pieces valued/s each results irs disjoint pieces.
Two of theses pieces have been identified in Steps 2 and 3 already and thus-er2 more pieces
can be identified. At this, lgt; be the player that is to be assigned the leftmost smallest pieA|]

in Step 5 and the only player that marked the rightmost sistgfiece]pj, p]. Then there must be
a playerpy, k # j, with w(A,Aj) < Y/sandw(pj,p) < s, and there is at least one piefgr, p’]
among thes— 2 remaining pieces for which it is true that(px, p’) = L/s andv;(px, p’) < /s, i.e.,
for somep’ it holds that||[px, p']|| < ||[pj,P’]|l. Hence, within any outer-loop iteration, the inner
loop stops after at most— 2 iterations. Counting in single steps, Steps 1, 2, 3, 5, @nd, 8
each are repeatddn-4)/2] times, Steps 4.1, 4.2 and 4.3 each are repeated atﬂﬁs“i/ 2l (n—2i)
times, Steps 9.1 through 9.4 each are repeated at most onc8tep 10 involves at most nine more
steps (according to Figuké 1). Thus, in terms of single séspsresented in Figufeé 3, the protocol
is bounded by(7- [(-4)/2]) + (3- zilnf‘)/ﬂ (n—2i))+4+9 steps. Thus, the protocol in Figure 3
carries out only finitely many operations and is finite bouhde O
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Theorem 4.9 For n > 5 players, the cake-cutting protocol in Figuré 3 hhé/z} + 1 guaranteed
envy—free—relation@

Proof. The DGEF of the protocol in Figurg 3 increases every time digoiis assigned to a
player. Considering Steps 1 through 8 of any outer-loomiten with s players, playem; (the
player receiving the leftmost smallest piece in Step 5 angping out with this portion in Step 7)
will not be envied by any of the— 1 other players. Regarding playpg (the player receiving the
rightmost smallest piece in Step 6 and dropping out withgbigion in Step 7), two cases need to be
considered—the best case and the worst case. In the besplea®zp, immediately is not the same
one as playep;. In the worst case, players and px are one and the same player (i.p= K) in
Step 3, and Steps 4.1 through 4.3 need to be executed. lratd@sas already mentioned in the proof
of Theoreni 4.8, there must be at least one pipgep’] with vi(pk, p) = Y/s andvj(px, p’) < Vs,
i.e., for somep’ it holds that||[ox, p']|| < ||[pj,P’]||. Consequently, in both the best and the worst
case the player receiving the rightmost smallest pieceh(reispect to the current right boundary,
either p or somep’) will not be envied by any of the— 1 other players, not even by playpy.
However, none of the playens; and px can be guaranteed to be not envied by more tharl
players according to the proof of Lemimal3.4.

Since the outer loop is repeaté@—4)/2] times, the number of guaranteed envy-free-relations
among the players sums up {@/2) — 8 whenn is even, and tq/2| — 4 = [n*/2| —5 whennis
odd. Note thasis decreasing in every outer-loop iteration, and/8a@s increasing, which implies
that no player receiving a portion valuéd at a later outer-loop iteration will envy any of those
players that received a portion in one of the previous ooigp-iterations. To verify the latter, let
us denote by the subcake to be divided and kythe number of players participating in outer-
loop iterationt with 2 <t < [(—4)/2]. Considering any outer-loop iteratian- 1 with cakeC/_,
being renormalized such thatC/_,) =1, 1<i < s_1, each of the two players dropping out in
iterationt — 1 receives a portion he or she values exabMy, of C{_; and which is valued at most
1/s_, of C_; by the remaining players, whewC/_,) > s-1/n (see Remark4l6.5). Consequently,
all playerspj, 1< j < s, participating in outer-loop iteratioh value subcak&; to be worth at
leasts/s_; of C_4, i.e.,vj(C{) > (3/s-1) - Vj(C{_;), and the two players dropping out in iteratibn
both receive a portion valuggs, of subcakeC/. Thus, players dropping out in outer-loop iteration
receive each a portion that is valued at légst; of C{_; according to their measures.

Once the outer loop has been completed, either fourigfeven) or three (ih is odd) players
are left. If there are four players left, three more envyefrelations can be guaranteed by executing
Steps 9.1 through 9.4, as the three remaining players wilknay the player receiving the fourth-
to-last portion, but no more than three envy-free-relaioan be guaranteed, again by the proof of
Lemmal3.4. In addition, the three last players entering $€will not envy each other, because
the Selfridge—Conway protocol always provides an envg-ftigision. Accordingly, six more envy-
free-relations are guaranteed. Summing up, the protodébiure[3 has a DGEF df*/2| +1. O

Theorem 4.10 The proportional cake-cutting protocol in Figuré 3 is stegy-proof in the sense of
Definition[4.3.

16Note that the same formula holdsnif= 3, but for the special case nf= 4 even one more envy-free-relation can be
guaranteed (see Theoréml4.2).
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Proof. From Step 9.1 on (when at most four players are left), theopmithas been proven to
be strategy-proof in Theorem 4.4. With respect to Stepsdutir 8, three different cases need to
be considered, each of which applies analogously to botgrasg the leftmost smallest piece and
assigning the rightmost smallest piece. Note that a chgatitempt on one of the pieces does not
influence the assignment of the other. The same three caglgsvapen there is a cheating attempt
on the rightmost smallest piece and Steps 4.1 through 4@ toebe executed. In the following
case distinction, given any iteratidrof the outer loop and caké/ = [A, p| with v;(C/) = 1 for all
playersp;, 1 <i < g, we will consider only the situation when there is exactlg @ayer not telling
the truth with respect to the leftmost smallest piece, thytim get more than a proportional share.
Let pc be this cheating player, where<lc < 5.

Case 1: If pcis the player receiving portioB; = [A, Ac] with V(A , Ac) > 1/ in Step 5 (and dropping
out in Step 7), them. would receive more than a proportional share. Howeves, alll other
players are still guaranteed a proportional share, sircé tlem consider portio; as being
worth at mostl/s, of C{ according to their measures, so they all consider the rentapart of
the cake to be worth at least-1)/s of C/.

Case 2: If the cheater,p;, would have received portio@. = [A,A¢] in Step 5 when telling the
truth (sove(A,Ac) = Vs andvi(A,Ac) < 1/s with 1 <i < s andi # c) but now is not (since
pc iIs making a mark ad; with Ac < A[), then the cheater could end up with even less than
a proportional share. Let us see why this holds true. In tagecanother playep; with
j # ¢, receives portiol€; = [A,Aj], Ac < Aj < A¢, which determines the left boundary@f,
(the remaining cake to be continued with) to ke According to the measure of playg,
[Aj,p] is worth at mosts—1)/s of C{, because he or she valug@s A;] to be worth at leasV/s
of C/, as assumed beforehand.

However, since the protocol works in a parallel way, this limsvalue may be compensated for
by some gain in value with respect to the rightmost smallesgCy = [pk, p”] that is assigned
in Step 6 (where is the left boundary of the rightmost smallest piece markesidme player
P, [[{¢, j,k}|| = 3, andp” is the current right boundary, i.e., eithef = p or p” = p’). That

is, if Ve(Ac,Aj) < Ve(pe, pk) then the loss playep; experiences by cheating with respect to
the leftmost smallest piece is made up for by an accidensaifficient gain relative to the
assignment of the rightmost smallest pi@eHowever, ifve(Ac,Aj) > Ve(pc, px) then no
sufficient compensation takes place and plgyeconsiders<C/, ; = [A;, p], Which is the part
of the cake to be continued with and to be divided amgng?2 players, as being worth at
most(s-2)/s of C/. Thus, in this case playes; is not guaranteed a portion that is worth at
leastl/n of C in total (according to his or her measure), even though theopol would be
proportional if all players were playing by the rules andigies required by the protocol.
Again, all other players are still guaranteed a proportishare. Playerg; and px both value
their portion to bel/s of C{, and thes — 3 remaining players consid€, ; = [Aj, pk] (which

is to be divided among — 2 players) as being worth at ledst2)/s of C{.

17Note that the compensation for the cheater’s loss may alseztiemulated over the following rounds as long as the
cheater has not been assigned a portion yet.
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Note that if the cheater marks the rightmost smallest piecéhé very same outer-loop
iteration in which he or she is cheating on the leftmost sesalbiece and happens to receive
the rightmost smallest piece, then there is no influence empthntions to be assigned in this
outer-loop iteration, as even the cheater will receive p@rional share being worths of

C/ according to his or her measure.

Case 3: If the cheater does not receive the leftmost smallest po@jo= [A,A;] by cheating nor
would have received this portion when telling the truthntlieis would not at all affect the
leftmost portion to be assigned in this particular outepldteration. The player receiving
portionC; = [A,Aj] in Step 5 values this portion as beifg of C/, and the remaining players
(except for some playquy, j # k, that is assigned the rightmost smallest piece) continge th
procedure witlC{ ; = [Aj, pk] (Wherepy is the left boundary of the rightmost smallest piece
marked bypy), which each of them values at leést2)/s of C/, even the cheater.

This concludes the proof of Theorém 4.10. O

Figure[4 shows how to adapt the protocol in Figure 3 so as t@eela strong fair division.
Again, note that if the inner loop (Steps 4.1 through 4.3) iatsbeen executed in an outer-loop
iteration (Steps 1 through 8), we have the special case ofimaer-loop iterations and = p’. In
this case, portiox = [px — M, p] assigned to playepg in Step 6 is the same & = [px — My, P']
in the general case, and the valuesdot= px —m, andC’ := [A; + my, p —my] that are set in Step 8
in this case are special casespof= p — p’+ px —my andC’ := [A; +my, ok —my | U [p’, p] (again,
since[p’, p] degenerates to a single poinpif= p’, which is valued zero by the axiom of divisibility,
see Footnotel4).

Theorem 4.11 For n > 3 players, modifying the first iteration of the cake-cuttingptpcol in
Figure[3 according to Figurgl4 yields a strong fair divisigorovided that in this iteration exactly
one player makes a mark that is closest to the left boundagyeaactly one distinct player makes a
mark that is closest to the right boundary.

Proof. Forn= 4 players, the protocol in Figureé 3 is the same as the protondeéibure[1 and thus
can be modified so as to yield a strong fair division accordinfheoreni 4.5, see Figure 2.

Forn > 4 players, consider the very first outer-loop iteration §Sté through 8) of the protocol.
Let p; be the unique player whose mark in Step 1 is closest to thbdeftdaryA, and letpy, j #K,
be the unique player whose mark in Step 1 is closest to thelsmimdaryp (if the inner loop needs
to be executed, legpx be the unique player whose mark in Step 4.2 is closest to tirerduright
boundaryp’). According to Step 2 in Figurld 4, Igt be any player such thdfA, A;]|| < ||[A,A/]]]
and there is no playep,, 1< j,0,z<s, ||{],¢,z}|| = 3, with [|[A,A]|| < ||[A,A]]], where ties can
be broken arbitrarily. Analogously, according to Step 3gextively, Step 4.3) in Figuté 4, let
be any player such thatpx. pl|| < [[ler. p]|| (respectively,|[ox, p']|| < [[[or.p']])) and there is no
playerp;, 1< kr,z<s, |{k.r,z}|| = 3, with |[0z p]l| < Il[er. ]l (Il Plll < lller. P']])- Steps 5
and 6 in Figuré ¥4 assure that playgrsand p, each are assigned a portion that, according to their
measures, is worth strictly more thafs of C' (which is worth at least as much 34 of C by the
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argument of RematﬂQ].,sincepj andpg each receive a portion that is bigger and thus is worth
more than the one they have marked as being worth ex&ethy C’ in Step 1.

By the same argument, time- 2 remaining players continue by applying a proportionatqol
to a part of the cake that all of them consider to be worthtytrinore than(n-2)/n of C. Thus, each
of the players receives a portion that is worth strictly mthran 1/n of C according to his or her
measure, which results in a strong fair division. O

Step 2.  Find any playersp; and p, such that||[A,A;]]| < ||/[A,A/]|| and there is nd
playerp, 1< j,£,z<s, ||{],¢,z}|| = 3, with |[[A,A7]|| < [|[[A,A/]]]. Setm, :=
(A=Aj)/2.

Step 3.  Find any playerspc and p; such that||[ok,p]|| < ||[or,p]|| and there is ng
playerp,, 1<k,r,z<s, |{kr,z}|| = 3, with ||[p2, p]I| < ||[or,P]|- If there is
more than one player fulfilling this condition for playpg, and playerp; is
one of them, choose playek other thanp;. Setm, := (a—pr)/2.

Step 4.3. Find any playergx and p; such that||[ox, 0']|| < ||[er, ]| and there is ng
playerp,, 1<k r.z<s, |[{k.r.z}|| = 3, with [0, 0'][| < |[[or. ©']]l. If there
is more than one player fulfilling this condition for playey, and player;
is one of them, choose playgk other thanp;. Setm, := (—pr)/2.

Step 5.  Assign portiorC;j = [A,Aj +my] to playerp;.

Step6. If p=p’, assign portiorCy = [px — My, p] to player py, else assign portion
C« = [px —my, p'] to playerpx.

Step8. If p=p/, setC':=[Aj+m, px—m] andp := px—my, else se€C’ := [A; +
My, px— MU [p',p] andp := p — p' + px —my. SetA == Aj+my, p’ = p,
ands:=s—2.

Step 9.2. Find any playersp; and py such that||[p;,p]|| < ||[ox, p]|| and there is ng
playerp;, 1< j. k£ <s, [[{].k €} =3, with [|[o¢, p][| < [|[ox, p]||. Setmy :=
(Pi—pK)/2.

Step 9.3. Assign portiorC; = [p; —my, p] to playerp;. Let playerp; drop out.

Step 9.4. Setp :=p;—m andC’:=[A,p]. Sets:=s—1.

Figure 4: Modified steps in the first iteration of the protogolFigure[3 to achieve a strong fair
division forn > 3 players.

5 Proof of Theorem[3.5

In this section, we determine the degrees of guaranteed-fezwgess of the proportional cake-
cutting protocols listed in Tablg 1. Thus, we prove Theorefvéa Lemmasg 511 throudh 5.6. We
investigate proportional protocols only, because praopoal cake-cutting protocols have a DGEF
of at leastn according to Propositidn 3.3 and, thus, show some degresro€ss already.

18Recall that we assumed the axiom of positivity, which reesiimonempty pieces of cake to have a nonzero value for
each player, see Footndifie 3 for more discussion of this point

21



Over the years, several cake-cutting protocols have bemreprto be proportional and finite
bounded for any numberof players. A detailed description of various finite boungeoportional
protocols can be found in the books by Brams and Taylor [BE®68] Robertson and Welkb [RW98].
Our analysis of the protocols in Tableé 1 provides a basisdahér algorithmic improvements in
terms of the degree of guaranteed envy-freeness, and ttecpkin Figure[B is a first step in this
direction.

In the following subsections, we give a brief descriptiortted protocols listed in Tablg 1 and
provide a detailed analysis of their DGEF. Note that theealucakeC to be divided is normalized
such that; (C) = 1 for all playersp; with 1 <i <n.

5.1 Last Diminisher

The protocol works as follows: The first player cuts a piecethg&he considers being worth exactly
1/nin his or her measure. This piece is given to the 1 other players, one after the other. Now,
each player has the choice to either pass the piece on asiittesirim it before passing it on. If a
player considers the piece to be worth more thanhe or she trims it to exactly/n according to
his or her measure. When the last player has evaluated #us,pt is given to the player who was
the last trimming it, or to the player who cut it in the first pdaif no trimmings have been made.
The trimmings are reassembled with the remainder of the, @aldthe procedure is applied in the
same way for the — 1 remaining players and the reassembled remainder of thee G&lks process
is repeated until only two players remain. In the final rounfdh(— 1 rounds in total), these last two
players apply the simple cut-and-choose protocol to theaneder of the cake. For guaranteeing
each player a proportional share of the cake, the order gilgyers is of no significance.

Lemma 5.1 The Last Diminisher protocol has a degree of guaranteed-&negness o2+ n(n-1)/2.

Proof. Concerning the analysis of the degree of guaranteed emepndss, it is quite evident
that in the first roundh — 1 envy-free-relations are guaranteed, since each afithé& players not
receiving the first piece consider this piece to be of valuaadtl/n. Analogously, in théth round,

1 < k< n, n—k additional envy-free-relations are guaranteed. The nurobguaranteed envy-
free-relations is consecutively decreasing by one perdpas the players who already received a
piece are not involved in the evaluation process of subsgqoands (see the proof of Leminal3.4).
This sums up tq{‘;lli = n(n-1)/2 guaranteed envy-free-relations. In addition, in the fioahd one
more guaranteed envy-free-relation is created, as thdeupand-choose protocol guarantees that
both of the players will not envy each other. Finally, notatttihe player receiving the first portion
is not involved in the evaluations of any other portions, siatce the Last Diminisher protocol
is proportional, this player too cannot envy each of the ofilayers according to the argument
in the proof of Propositioll_3l3. Thus, one more guaranteeq-fee-relation must be added.
Consequently, the Last Diminisher protocol guarantees(®2-1)/2 envy-free-relations. O

5.2 Lone Chooser

The Lone Chooser protocol was first proposed by Fink [FEinédfojted in[[Saa70, BT96]). It can be
described as follows. For two players, the protocol is jhstsimple cut-and-choose protocol. For
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n > 2 players, the protocol has— 1 rounds. The first round simply describes the cut-and-ahoos
protocol executed by playeys and pz, which results in two pieces; andcp, with C = ¢cp U Co.
Assuming playeip; received piece&; and playerp, received piece,, in the second round player
p: has to divide piece; with player ps, and playerp, has to divide piece, with player ps. To
this end,p; cutsc; into three pieces each of which he or she considers to be abléastl/e, and

so doesp, with c,. Playerps then chooses one of the pieces of plageand one of the pieces of
player p,, both being most valuable accordingpgis measure. This guarantees each of the players
p1, P2, and ps a portion of at least/s in their measures. Carrying on in this way, when the final
round has been entered, each of the playerg,,..., pn_1 iS in possession of a portion that he or
she considers to be worth at ledgh-1) in his or her measure. Let us refer to those 1 players

as the “cutters” of roundh— 1. Finally, each of the cuttensy, ..., pn_1 cuts his or her portion into

n pieces each of valu&(n?—n), and playerp,, the “chooser” of roundh — 1, chooses one piece of
highest value (according to his or her measure) from eadh pfahen — 1 cutters of this round.

Lemma 5.2 The Lone Chooser protocol has a degree of guaranteed eeepdss of n.

Proof. Inthe course of the Lone Chooser protocol, none of the péagreailuate the portion of any
of the other players, which determines the DGEF of the LonedSér protocol to be as a result
of Lemmd3.4. 0

5.3 Lone Divider

A complete algorithmic description of this protocol woulel iather comprehensive. That is why we
will give just a rough sketch of the procedure. For a moreitbetalescription, the reader is referred
to Kuhn [Kuh67], see also, e.g., [BT96, RW98, DawO01].

The Lone Divider protocol works as follows: Some plapgr1 <d < n, is chosen to be the first-
round “divider.” The divider cuts cak€ into n portions that he or she considers each to be worth
n, i.e.,v4(Cj) = Ynwith 1 < j <n. Subsequently, all other players (the first-round “chogi$er
are asked to identify any of the portions they find acceptable, that is, each player idestdie
portions that are worth at least in this player's measure. Obviously, every choopgrc # d,
needs to accept at least one portop Depending on the players’ choices, there are different
ways for how the protocol continues. In the simplest case,players’ choices allow for aully
decidable divisioni.e., for a division such that each choos®rreceives one of the portions he
or she previously identified as being acceptable. Divigiethen receives the portion that has not
been assigned to any of the choosers. All players drop outhendivision is complete. However,
if the players’ choices do not allow a fully decidable diaisj there is either partially decidable
division (which means that only some—not all—of the choosers ar@media portion and drop
out), or afully undecidable divisiorfwhich means that there are at least two portions that haive no
been identified as being acceptable by any of the chooserthahdone of the choosers receive
a portion). In the case of a partially decidable divisiore tthoosers accomplish only a partial
allocation of the cake, i.e., those choosers that ident#tagptable portions in a nonconflicting way
are assigned a portion they have marked as being acceptabt@ out. In addition, this round’s
divider is assigned any one of the other portions and dropsttoel remaining portions (that could
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not be assigned to players) are reassembled, and a new rotmthg& remaining players, among
which a new divider is to be chosen, is started. In the casefolfyaundecidable division, none
of the choosers are assigned a portion; only this roundilelivreceives one of the two portions
that have not been identified as being acceptable by any ahthesers and drops out, and a new
round with the remaining players, among which a new dividdaoibe chosen, is started in which
the remaining cake is divided. This procedure is repeaté¢itithe whole cake has been allocated.
Note that in each round at least this round’s divider is amsiga portion and drops out.
It is easy to see that the Lone Divider protocol is finite bathend proportional.

Lemma 5.3 The Lone Divider protocol has a degree of guaranteed eregrfess a2n — 2.

Proof. The analysis of the degree of guaranteed envy-freenesé&lmpa worst-case scenario
in terms of the number of existing envy-free-relations. \Wane that the maximum number of
guaranteed envy-free-relations exists in the case thay eroserp. marksn — 1 portions as
being acceptable in the first round. In the following, let afer to this situation as the “worst-
case scenario.” In this scenario, the rules of the protaogly that a proportional division will

be achieved in the very first round (i.e., in this worst casnado the first round results in a fully
decidable division), and the following envy-free-relatioare guaranteed to exist in this case. The
divider will not envy any of the choosers, as he or she considach of the portions to bign,
resulting inn— 1 guaranteed envy-free-relations. Furthermore, noneeaithl choosers will envy
the player (be it the divider or any of the other chooserd)rzeived the portion he or she considers
to be not acceptable, leading to additional 1 guaranteed envy-free-relations. Since the DGEF is
the maximum number of envy-free-relations that are guaeghto exist ireverycase, the DGEF of
the Lone Divider protocol is at mosh2- 2. To argue that the scenario given above indeed represents
the worst case fon > 3 players (and so the DGEF is equal t0-22), we will consider all possible
cases different from the worst-case scenario. We will shat inh each of these cases the number
of existing envy-free-relations is, in fact, higher tham-22. This implies that none of these other
cases considered represent a worst-case scenario.

For notational convenience, we will use the term “case+feeftb envy-free-relation” to refer to
the number of those envy-free-relations that necessatrilst exist in any of these cases, regardless
of which particular valuation functions the players havhéo than what was causing the respective
case to occur). Recall that the term “guaranteed envysfrksdion” is reserved for the number
of envy-free-relations that necessarily exist in the woeste (and—as we will see—none of the
cases below will describe the worst case). Thus, the termse“eaforced envy-free-relation” is
more general than and includes the term “guaranteed eeeyrélation”: The number of case-
enforced envy-free-relations in the worst case (i.e., ti@mum number of case-enforced envy-
free-relations, where the minimum is taken over all possithses) is exactly the number of
guaranteed envy-free-relations.

Case 1: The first round results in a fully decidable division. Comsithe following two subcases.

Case 1.1: The total number ofinacceptableportions is greater than in the worst-case
scenario. Specifically, let us look at the situation thatcélyaone of the choosers
considers just one more portion as being inacceptable th#meiworst-case scenario.
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This change decrements the total number of acceptablepstiy one and thus creates
one additional case-enforced envy-free-relation, simig ¢hooser will not envy the
player receiving this particular portion. However, sinke humber of guaranteed envy-
free-relations of the worst-case scenario persists alsbisncase, increasing the total
number of inacceptable portions also increases the totabeuof case-enforced envy-
free-relations. Thus, the present case does not descrilbes&-gase scenario.

Case 1.2: The total number o&cceptableportions is greater than in the worst-case scenario.
Specifically, let us look at the situation that exactly onah&f choosers considers just
one more portion as being acceptable than in the worst-c@s®aso. This chooser
then accepts all portions, and thus necessarily considetsa the portions to be worth
exactlyl/n. Accordingly, this chooser does not envy any of the otheygats, resulting in
n— 2 additional case-enforced envy-free-relations. In paldir, since this chooser still
does not envy the player he or she did not envy in the worg-sasnario, incrementing
the total number of acceptable portions by just one incetigetotal number of case-
enforced envy-free-relations by onetfit= 3) or even more (i > 3). Thus, the present
case does not describe a worst-case scenario.

Case 2: The first round does not result in a fully decidable divisidius, the protocol runs over
more than one round. Far= 3 players, an additional round would be caused only by a
fully undecidable division. Fon > 3 players, additional rounds are caused by either a fully
undecidable division or a partially decidable division.elery round, at least the divider of
this round is assigned a portion and drops out. On the paheo€hoosers, entering a new
round creates additional case-enforced envy-free-oelatthe number of which depends on
the present circumstances. Simply put, every additionatdaowill increase the total number
of case-enforced envy-free-relations compared with thesta@ase minimum of2— 2. This
justifies why a division obtained by the execution of morentbae round does not present a
worst-case scenario.

To see why running more than one round will lead to more than 2 case-enforced envy-
free-relations, let us first, in Cadés2.1 2.2, have &closk at the case-enforced envy-
free-relations created in each nonfinal round if more tha@ mund is executed in total.
The final round will be handled separately in Caé 2.3. Inidar, if there are exactly
two rounds, the total number of case-enforced envy-fresioas created is the sum of those
explained in the first paragraph of either Casé 2.1 or Clasendizh describe the number of
case-enforced envy-free-relations created in the firsidpand those explained in Cdsel2.3
(which describes the number of case-enforced envy-fie¢iors created in the final round).

Case 2.1:In the case of &lly undecidable divisionf the cake as the result of the first round,
the first-round divider receives one of the portions thathaet been marked as being
acceptable by any of the choosers and drops out.nAlll choosers enter the second
round and will not envy the divider of the first round, resudtiin n— 1 case-enforced
envy-free-relations. Moreover, the first-round dividetlwbt envy at least one of the
n— 1 other players, since there must be at least one player e alogs not envy, which
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follows from the proof of Proposition 3.3. Thus,case-enforced envy-free-relations
result from the first round in this case.

Note that Proposition_3.3 can be applied only to the firshcbwivider. Thus,
analogously to the above argument, for every additionatdanith s < n players that is
caused by a fully undecidable division and that is not thd fmand,s— 1 case-enforced
envy-free-relations need to be added. An analysis of therfiiad follows in CasglP]3.

Case 2.2:1n the case of gartially decidable divisiorof the cake as the result of the first
round, letK denote the set of thodeplayers, 1< k < n— 1, that are in conflict with
each other concerning the portions they identified as baiog@able in this first round.
Let L be the set of the¢ remaining players, where4 ¢ < n—1 andn=k+¢. The
players inL can divide a part of the cake without any conflict, i.e., eakcthe players
in L is assigned one of the portions he or she identified as beirgptable. Note that
¢ =1 would represent Cagél 2.1, and that the divider always iobtiee players ir_.
Following the protocol, each of the playerslirreceives a portion and drops out while
each of the players iK enters the second round. Since none of the playeksviould
accept any of the portions the playerdLimave received, each of the playerdirdoes
not envy any of the players ib, resulting inké > k+ ¢ = n case-enforced envy-free-
relations. The players in (except for the first-round divider) that are assigned aiqort
and drop out in the first round are each guaranteed one eegydtation due to the
argument in the proof of Propositibn 8.3, summing uj tol additional case-enforced
envy-free-relations. Moreover, the first-round dividel wot envy any of the — 1 other
players inL, resulting in/ — 1 more case-enforced envy-free-relations. Consequently,
2(¢ — 1) + k¢ case-enforced envy-free-relations result from the finghcbin this case.

Now consider any additional round with= k' 4 ¢’ players that is caused by a partially
decidable division of the cake and that is not the final rountere k' players are

in conflict with each other and players accomplish a partial allocation of the cake.
Analogously to the above argument (except that Propo$&i8iis no longer applicable),
k'¢' case-enforced envy-free-relations are to be added fd¢ filayers being in conflict,
and/’ — 1 case-enforced envy-free-relations are to be added forabind’s divider. An
analysis of the final round follows in CasE2.3.

Case 2.3: Aside from the case-enforced envy-free-relations thatcaeated by executing
a nonfinal round, additional case-enforced envy-frediogla are created in thiénal
round, in which even the last player receives a portion. In eacle,cd final round
is characterized by providing a fully decidable divisionorSequently, considering a
final round withs players at least(@— 1) case-enforced envy-free-relations are created
according to Casés[1.1 anifi1.2.

As a result, in the example of the protocol running a secomddpeithem+2(s—1) = n+
2(n—2) with s=n—1 (see Casel2.1), of2— 1)+ ké+2(s—1) =kl +2(n—2) > n+2(n—2)
with s= k (see CasEl2 2) envy-free-relations are case-enforceds, $imeen > 3, a second round
yields at leash+ 2(n— 2) > 2n— 2 case-enforced envy-free-relations in total. As indidatbove,
every additional round increases the number of case-exdarnvy-free-relations even more.
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Case§ll arld 2 (and their subcases) completely charactisiaations different from the worst
case scenario, since their number of case-enforced eeeyélations is always greater tham-22,
the number of envy-free-relations guaranteed to existérsttenario given in the first paragraph of
this proof. This justifies that this scenario indeed represthe worst case. Note that the protocol
does not require any of the choosers to value any of the pertivey marked as being acceptable
(i.e., the only information provided on these portions atttmey are considered to be worth at least
1/n), and thus, according to the proof of Lemial 3.4, the DGEF efltbne Divider protocol is
2n—2. O

5.4 Cut Your Own Piece

The protocol works as follows: Every playgr marksn adjacent pieces each valué@ in his or

her measure, resulting imn— 1) marks in total. Afterwards, a cut is made at betweenl and
2(n—1) of the existing marks, resulting in at leasadjacent pieces. Each player then is assigned
a portion that contains at least one of the pieces he or shikeethdeforehand plus some optional
supplement. There are different strategies for how to make such that the resulting division is
fair. The number of cuts to be made depends on the strategenhdNote that there always is at
least one strategy that guarantees each plpyaiportion valued at leastn according to his or her
measure, i.eV;(C) > Y/nfor all 1 <i < n[Ste69]. Ifn— 1 cuts are made (a— 1 of the existing
marks), each player’s portion consists of exactly one piglaieh is worth at least/n according to

his or her measure.

Lemma 5.4 The Cut Your Own Piece protocol has a degree of guaranteegifem®ness of n if no
strategy is specified, and a degree of guaranteed envydssen2n — 2 for the “left-right strategy”
(which, for convenience, will be explained in the proof).r&tver, for this protocol no strategy can
give a better DGEF tha@n — 2.

Proof. As mentioned above, there are different strategies for loowake cuts such that the
resulting division is fair. If no particular strategy is giv, this protocol has a DGEF of onty
(according to Lemmla 3.4), since all players made their madependently, and none of the players
were asked to give an evaluation of the marks of any of ther gilagers. Hence, only the minimum
of n envy-free-relations can be guaranteed. Steinhaus [Stie&@jt mention a strategy for how to
achieve a simple fair division; he just mentioned that tlaweays exists at least one.

However, when we consider a strategy that always assignkefitmeost (with respect to the
interval [0,1]) smallest piece to the player that marked this piece as bafinglue 1/n, and the
rightmost smallest piece to the player that marked thisepgx being of valué/n, this protocol
guarantees at leash2 2 envy-free-relations. We call this strategy th#-right strategy

In more detail, applying the left-right strategy we assiba teftmost piece to the player that
marked the smallest piece starting at 0, and we assign thiigt piece to the player that marked
the smallest piece finishing at 1. That way it is guaranteati ttten — 2 remaining players each
consider the part of the cake between the assigned leftexst pnd the assigned rightmost piece
as being worth at lea$t-2)/n. Thus, this subpart of the cake can be allocated to thes® players
according to the marks made in the first instance. Note thaeiplayer that marked the leftmost

27



smallest piece happens to be the same as the one that maekedhtmost smallest piece, the
rightmost piece is given to the player that marked the sesamallest piece finishing at 1. If several
marks for the leftmost (respectively, for the rightmost)adlest piece coincide, any mark can be
chosen, without loss of generality. In this example, thengetpiece” and “portion” can be used

interchangeably, as this protocol assigns contiguousopart

When applying the left-right strategy as described abowves guaranteed that the player
receiving the leftmost smallest piece is not envied by anthefn — 1 remaining players, since
all of them value this piece at mosh according to their measures. Analogously, it is guaranteed
that then — 2 players in the “middle” do not envy the player receiving tightmost smallest piece
as they value this piece at mdgi. Note that if the player that marked the leftmost smallestgiis
the very same as the one that marked the rightmost smalkxst,ghis player may envy the player
receiving the rightmost piece, since in this case the rigistpiece to be assigned is just the second
smallest piece finishing at 1. Thus, omly- 2 envy-free-relations can be guaranteed with respect to
the player receiving the rightmost piece. However, one rgaeanteed envy-free-relation needs to
be added, as the player that marked and is assigned the $ftmallest piece cannot envy each of
the other players (according to the argument in the proofropésition 3.8). Consequentlyn2- 2
envy-free-relations can be guaranteed in total.

The DGEF achieved for the Cut Your Own Piece protocol by thaieation of the left-right
strategy cannot be enhanced by any other strategy. Theikttae to the fact that all pieces have
been marked without any mutual evaluations (as alreadyiomed above), and that no common
boundaries other than the left border of the leftmost pigwt the right border of the rightmost
piece (with respect to the intervf, 1]), which could be used for subsequent comparisons of the
guaranteed sizes and thus values of the pieces marked, @& kn O

5.5 Divide and Conquer

The Divide and Conquer protocol, which was first presenteB\mn and Paz [EP84] (see also, e.g.,
[RW98]), is based on the idea of dividing cakedy simultaneously partitioning disjoint parts ©f
The procedure slightly differs depending on whether the lmemof players is even or odd.

If there is an even number of players, say: 2k for some integek, all players but one divide
cakeC in the ratiok/k by a single cut, yielding two pieces of equal value for eacitheen — 1
players. The noncutter identifies either the piece to theolethe middle cut (with respect to the
interval [0,1]), or the piece to the right of the middle cut as being wortheast half of the cake
according to his or her measure, and then continues divitlirggpiece with thosd — 1 cutters
whose cuts fall within this piece. The other piece will beided among thé& remaining cutters.
That is, a new round is started in which those two pieceS afe divided among players each,
simultaneously but independently of each other.

If there is an odd number of players, say- 2k+ 1, all players but one divide cak®in the ratio
kK/(k+1) by a single cut. The noncutter identifies either the piecééoleft of thekth cut as being
worth at leask/(2k+1), or the piece to the right of thieh cut as being worth at leadtt1)/(2k+1).
Accordingly, the noncutter continues dividing either thiege to the left of the&kth cut with those
k — 1 cutters whose cuts fall within this piece, or the noncutieides the piece to the right of the
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kth cut with thosek cutters whose cuts fall within this piece. In both casesother piece will be
divided among all the remaining cutters.

In this way, the procedure is applied recursively until juste player remains in each
subprocedure, i.e., until all the cake has been allocatdteilayers. Note that in the case of
n= 2, this is just the simple cut-and-choose protocol.

Brams, Jones, and Klamlér [BJKO7] present a finite boundepgstional cake-cutting protocol
that is based on a divide-and-conquer strategy, and foausgsnimizing the number of players the
most-envious player may envy. The major difference to tloégmol described above lies in the way
of splitting the piece of a particular subprocedure into subpieces. While the original Divide and
Conquer protocol suggests to use one of the cuts made bytteescthe Minimal-Envy Divide and
Conguer protocol suggests to conduct one more cut strietiywden the cut chosen by the Divide
and Conquer protocol and the very next right neighboringl@atording to the intervgD, 1]), and
then to use this additional cut for splitting the particuysaace of the cake into two subpieces for the
following round if there is any (or to be assigned if this hagib the final round).

Lemma 5.5 The Divide and Conquer protocol and the Minimal-Envy Divaahel Conquer protocol
both have a degree of guaranteed envy-freeness [dbgn| -+ 2n — 2109 +1,

Proof. The Divide and Conquer protocol is recursively defined. Raply, in each subprocedure
the given subpart of the cake is divided into two pieces anarsdhe players into two groups, the
procedure then is applied recursively again and again tadbelting pieces and related players
until in each subprocedure just one player remains. In eachd, every player participating in
any of the subprocedures of this round will not envy at least of the players continuing with the
corresponding other piece, as this other piece is of no mawe\(according to his or her measure)
than the one he or she is continuing with. Thus, in each rdian@ach player involved in this round,
one envy-free-relation is guaranteed to exist. Note tlatefch subprocedure in any round except
the final one, the numbers of players to be continued witherrdéisulting two subprocedures of the
following round depend on whether the total number of playevolved in the given subprocedure
is even or odd.

From these remarks it follows that the Divide and Conquetqual’'s degree of guaranteed
envy-freeness, call d(n) for n players, can be described by the following recurrence:

d(l) = 0,
din) = d(k)+d(k)+2k for n = 2k,
d(n) = d(k)+d(k+1)+2k+1 forn=2k+1.
Apparently, this recurrence relation can be simplified to:
d(l) = 0O,
d(n) = d(["/2])+d([v2])+n forn>2. (5.a)

The recurrence i (5.a) and similar versions are well knawoccur also in other contextd. It

19For example, they also occur in the context of evaluatingrtheber of comparisons made by various sorting
algorithms that are based on a divide-and-conquer stratégyparticular, this recurrence expresses the number of
comparisons done by the standard merge-sort algorithm.
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is a matter of routine (see, e.d., [GKP94]) to solve it (tehring it into closed form):
d(n) = n-|logn|+2n—2M°9"+1 forn>1. (5.b)

How does Equation_(B.b) reflect the guaranteed number ofaeyrelations of the Divide and
Conquer protocol? As mentioned before, this protocol cacdmsidered as a collection of several
subprocedures that altogether yield a proportional divisif the given cake. This collection of
subprocedures can be represented as a balanced binargatied the “recursion tree”), because
in every subprocedure the given subpart of the cake is coithimd pieces for which the procedure
is applied recursively again and again until just one plagerains in each resulting subprocedure.
Since the depth of a balanced binary tree is logarithmiceémtiimber of leavegJogn| rounds are
performed in total. If the number of players is not a power of two, every round except for the las
one (i.e.,|logn| rounds) is represented by a completely filled level of thatyirtree in terms of the
number of players, since ailplayers are participating in these rounds—in differentpsabedures
though. Note thah is a power of two if and only if it holds thglogn] = |logn| (i.e., the final
round is numberedllogn|), and only in this case, afl players are involved in each of the rounds,
even in the final round.

Recall that, in each round, every participating player wilt envy at least one of the players
continuing with the particular other piece, since he or shesitlers this piece to be of no more
value than the one he or she is continuing with, i.e., in eaahda one guaranteed envy-free-relation
is created on behalf of each of the participating playersr this reasonn envy-free-relations
are guaranteed to be created in each of the fimin| rounds. This is because in subsequent
rounds the particular subparts to be divided will never gggér again, and once two players have
ended up in different subprocedures, they will never meainaip the same subprocedure of any
of the following rounds. Moreover, once a player has endednugome group, he or she will
not make future evaluations of pieces of the cake to be divelmong the players in the other
group. Thus, those envy-free-relations that result frognadrthe first|logn| rounds are guaranteed
to persist until all the cake has been allocated. Howeverarinot be determined which of the
players continuing with the other piece of the particulaspart is not envied, since no evaluations
of the pieces created in other subprocedures are made.drdacce with the proof of Lemnia 3.4,
the latter also justifies why no more envy-free-relations ba guaranteed. Hence, it can just be
guaranteed that each player does not envy at least one ofaherg continuing with the other
piece. Summing up, as exactlyguaranteed envy-free-relations are created in each of rite fi
|logn| rounds,n- [logn| guaranteed envy-free-relations are created over all sumatept for the
final round ifnis not a power of two. Note thatifis a power of two, thélogn)th round is the final
round and Equatior_(5.b) simplifies &gn) = n-logn, so in this case we are done.

In contrast, ifn is not a power of two then less thamplayers will be involved in the final
round (i.e., in the round numbergébgn| = [logn| + 1), since in that case there is at least one
subprocedure that involves an odd number of players. Moeeifspally, in this case the number
of players involved in the final round can be expressed byetra th— 2[09n/+1 \where 2/09n/+1
specifies the number of players that would be involved in the fiound if the binary recursion tree
would be a full binary tree, i.e., if all players would be involved in the final round.

In order to analyze the final round farnot being a power of two in detail, lI&tsubprocedure
denote a subprocedure involving exadtplayers. A 3-subprocedure can occur only in the second-
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to-last round, and if it occurs then one of its three playarmot be participating in the final round,
i.e., only two out of three players are proceeding to the finahd. Since in a balanced binary
tree the depth of all leaves differs by at most one, the setmtast round can have only either
2-subprocedures and/or 3-subprocedures, or 4-subpnesedod/or 3-subprocedures. Regarding a
second-to-last round with at least one 3-subprocedure mpd@mber of 2-subprocedures (which
can happen only ifi is not a power of two), the number of players involved in thalfiround
will be twice the number of 3-subprocedures occurring indbeond-to-last round. Regarding a
second-to-last round with at least one 3-subprocedure apdamber of 4-subprocedures (which
again can happen only if is not a power of two), the number of players involved in thealfin
round will be twice the number of 3-subprocedures plus fones$ the number of 4-subprocedures.
Consequently, the number of 3-subprocedures and the nuwshidesubprocedures in the second-to-
last round determine how many players are participatingerfinal round, and thus also determine
the number of guaranteed envy-free-relations to be creatdw final round.

If nis not a power of two, analogously to the argument for the figyn| rounds, also in the
final round one guaranteed envy-free-relation is created meispect to each participating player.
Thus, for any numben > 1 of players, at leastr2— 2['°9"+1 guaranteed envy-free-relations are
created in the |logn| + 1)th round?d According to the proof of Lemmia_3.4, no more than that
many envy-free-relations can be guaranteed. Altogethisrsums up tm- |logn| 4 2n— 2llogni+1
guaranteed envy-free-relations in total, which is the neingtated in Equation (3.b).

The degree of guaranteed envy-freeness of the Minimal-Bivide and Conquer protocol
can be shown just as for the original Divide and Conquer jpritoThe difference in the way of
splitting the particular piece of the cake into two subpgedees not affect the number of guaranteed
envy-free-relations. Consequently, although the Min#aby Divide and Conquer protocol does
decrease envy according to the definition of Brams, JonesKimler [BJKO7] (see Sectidd 6 for
more discussion of this point), its DGEFris|logn| +2n— 2l°9n+1 just as for the original Divide
and Conguer protocol. O

5.6 Recursive Divide and Choose

This protocol has been presented by Tasnadi [Tas03] aratibes a recursive procedure for how
to always achieve a proportional division. It works as fatbo In the case oh = 2, this is just
the simple cut-and-choose protocol. In the case &f3, one of the players, the “divider,” divides
the cake into three equal pieces according to his or her meaamod each of the two other players,
the “choosers,” marks two pieces he or she considers to bthwloe most, where ties may be
broken arbitrarily. If both choosers marked the same twaqse they divide these by applying
the simple cut-and-choose protocol, and the divider reseiie remaining piece. If the choosers
marked different pieces, they divide the piece they botletmgrked via the simple cut-and-choose
protocol, and each of the choosers divides the piece mankgdgsbhim- or herself with the divider,
again via applying the simple cut-and-choose protocol.

In the case oh > 3 players, this procedure is repeated recursively untit@thes down to the
simple cut-and-choose protocol involving two players orly more detail, in the first round the

20Note thatn is a power of two if and only if @— 211°97/+1 — 0 and that in this case there is fidogn| + 1)th round.
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divider cuts the cake inta equal pieces according to his or her measure, and each of-the
choosers marka — 1 pieces he or she considers to be worth the most, where tigdenbroken
arbitrarily. Afterwards, a new round is started and eaclneftpieces is divided among those- 1
choosers that identified this piece as being acceptablecefoing pieces that have been marked
by less tham — 1 choosers, the divider fills out these empty slots by an agjate number of
clones. In other words, each of tinepieces enters the next round of the protocol and induces a
new subprocedure in the scope of which the particular piebeing divided among— 1 players.

All n subprocedures are executed simultaneously but indepiynaéreach other. Note that if in
the very first round alh — 1 choosers marked the same 1 pieces as being acceptable than there
is exactly one piece that has not been marked by any of theselmoIn this case, this piece is
directly assigned to the divider and the divider drops olitergas all choosers enter the next round
for dividing then— 1 remaining pieces among them.

Analogously, in thekth round, 1< k < n, there areﬂ!‘zz(n— i +2) subprocedures, i.e.,
|‘|!‘:2 (n—i+ 2) pieces are to be divided simultaneously but independentlyrgn — k+ 1 players
each. In every subprocedure any one player is determined tloebdivider and cuts the particular
piece of this subprocedure into— k + 1 equal subpieces according to his or her measure.
Afterwards, each of the — k choosers of this particular subprocedure marksk pieces he or she
considers to be worth the most, where ties may be brokerranibit Each of then — k+ 1 pieces
will induce a new subprocedure in the next round and will vedegid among those— k players that
marked this piece as being acceptable—where the divideroiilt all empty slots regarding pieces
that have been marked by less than k choosers. Again, if in some rourid 1 < k < n, in any of
the subprocedures, all- k choosers agree on the same k pieces, then there will be exactly one
piece that has not been marked by any of the choosers. Indbés the unmarked piece is directly
assigned to the divider of this particular subprocedurd,iarthe following rounds, the divider will
not be involved in any of the subprocedures that results ftismone, i.e., onlyn — k pieces enter
the next round, in which these are to be divided amongithek choosers of the previous round.
Nevertheless, this divider will enter the next round and paélrticipate in all those subprocedures
that result from procedures he has not dropped out from yet.

Applying this procedure recursively until only two playermain in each subprocedure (i.e.,
runningn— 1 rounds), and dividing the corresponding piece of the caiteden these two via the
simple cut-and-choose protocol, the Recursive Divide almooSe protocol provides a proportional
division of the cake.

Lemma 5.6 The Recursive Divide and Choose protocol has a degree obgteed envy-freeness
of n.

Proof. For n > 3 players, no evaluations of entire portions are made—éxtmpthe one
special case when the first-round divider drops out in thg fYiest round (which, for the sake

of self-containment, will be considered separately beleahd thus the scenario from the proof of
Lemmal3.4 is applicable. Simply put, ontyenvy-free-relations can be guaranteed in every case
due to the argument in the proof of Proposition] 3.3, as theimisevaluations of entire portions
allow for any valuation functions, for example, those dixxt in the proof of Lemm@a 3.4. If in the
very first round alln — 1 choosers agree on the very same 1 pieces then the first-round divider
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will drop out with a portion that he or she values exaéflyand that all other players value at most
1/n. This results im guaranteed envy-free-relations, since none ofithel choosers will envy the
first-round divider and the first-round divider will not enay least one of the other players by the
argument in the proof of Proposition 8.3. However, in thisecao more envy-free-relations can be
guaranteed in the following rounds due to the argument galmve. Consequently, the DGEF of
the Recursive Divide and Choose protocahis O

6 Related Work and Discussion

The analysis of envy-relations dates back at least to Feldmd Kirman[[EK74]. In contrast to our
approach, they consider the number of envy-pairs in alrexisting divisions with the intention
of maximizing fairness afterwards via trading. In partaoulthey do not consider thdesignof
cake-cutting protocols that maximize fairness. In the migjof cases, research in the area of cake-
cutting from an economic perspective is concerned more thétexistence of certain divisions and
their properties than with how to achieve these divisions.

A different approach measures the intensity of envy in teofnthe distance between envied
portions [Cha86].

More recently, Brams, Jones, and Klamler [BJKO7] proposeahinimize envy in terms of the
maximum number of players that a player may envy. Their motibmeasuring envy differs from
our notion of DGEF in various ways, the most fundamental oicivhs that their notion takes an
“egalitarian” approach to reducing the number of envyiiets (namely, via minimizing the most-
envious player’s envy, in terms of decreasing the numbehisfsgingle player’'s envy-relations). In
contrast, the DGEF aims at a “utilitarian” approach (namely minimizing overall envy, in terms
of increasing the total number of guaranteed envy-fregtiogls among all players). That is to say
that, although these notions may seem to be very similar sitglance, the approach presented
in [BJKQ7] is not sensitive to a reduction in the number ofyer®iations on the part of any other
than the most-envious player, whereas the DGEF does takesgagle improvement into account
and adapts accordingly. The DGEF, thus, is a more specifice firte-tuned measure. Note also
that Brams, Jones, and Klamler [BJKO7] focus primarily oesgnting a new protocol and less so
on introducing a new notion for measuring envy.

Another approach is due to Chevaleyre etlal. [CEEMO7], whindevarious metrics for the
evaluation of envy in order to classify “the degree of envyaisociety,” and they use the term
“degree of envy” in the quite different setting of multiag@tiocation ofindivisible resources.

Besides, we stress that our approach of approximating freeyess differs from other lines of
research that also deal with approximating fairness. Famgte, Lipton et al [ [LMMSO04] propose
to seek for minimum-envy allocations ofdivisible goods in terms of the value difference of the
utility functions of envied players, and Edmonds and Pri#RJ6h/ EP0O6a] approximate fairness
in cake-cutting protocols by allowing merely approximgt&lir pieces (in terms of their value to
the players) and by using only approximate cut queries (mdeof exactness).

It may be tempting to seek to decrease envy (and thus to setea DGEF) via trading, aiming
to get rid of potential circular envy-relations. Althougkewo not consider trading to be an integral
part of a cake-cutting protocol, let us for a moment digresbriefly discuss how trading may
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potentially affect the number of guaranteed envy—freati@h Indeed, if the DGEF idower
thann(n-1)/2, the number of guaranteed envy-free-relations can be wegrto this lower bound,
or to an even higher number, by resolving circular envytiats (of which two-way envy-relations
are a special case) by means of circular trades after thaiixe®f the protocol. Thus, in this
case, involving subsequent trading actions adds on the euoflguaranteed envy-free-relations.
Furthermore, having exactilyn-1)/2 guaranteed envy-free-relations after all circular erefgtions
have been resolved, three more guaranteed envy-fre@rsatan be gained by applying an envy-
free protocol (e.g., the Selfridge—Conway protocol) tottiree most envied players, which yields
to an overall lower bound of -8 n(n-1)/2 guaranteed envy-free-relations. To give an example for an
even higher impact of trading, when circular trades inderedirasolved after executing either the
Divide and Conquer protocol or the Minimal-Envy Divide andr@uer protocol, their numbers of
guaranteed envy-free relations can be improve@(to1)/2) — 1, which follows from [BJKO7].

On the other hand, if the DGEF of a proportional cake-cuttirajocol is(n-1)/2 or higher(such
as the DGEF of the protocol presented in Figure 3) then—ai#pgron the protocol—circular envy-
relations may not bguaranteedo exist, and if such cycles are not guaranteed to existingauhs
no impact on the number of guaranteed envy-free-relations.

However, as mentioned above, we consider trading not to beopa cake-cutting protocol,
though it might be useful in certain cases (for example, Bramd Taylor[[BT96, page 44] mention
that trading might be used “to obtain better allocationsyéwer, this is not a procedure but an
informal adjustment mechanism”). In particular, the notaf DGEF refers to (proportional) cake-
cutting protocols without additional trading, i.e., the BBis defined to make a statement on the
performance of a particular protocol and not about all sofresctions to be undertaken afterwards.

Although the well-known protocols listed in Taldlé 1 have been developed with a focus
on maximizing the DGE@ linking their degrees of guaranteed envy-freeness to tweridound
provided by involving, e.g., the Selfridge—Conway protoaod guaranteed trading opportunities
indicates that the development of cake-cutting protocalk wconsiderably higher DGEF or even
with a DGEF close to the maximum ofn— 1) poses a true challenge. That is why we feel that the
enhanced DGEF of the protocol presented in Figlire 3 cotesitusignificant improvement.

7 Conclusions

Although different disciplines are engaged in the develeptof fair cake-cutting protocols for
decades now, finite bounded protocols that guarantee anfexergivision forn > 3 players are
still a mystery. However, finite bounded protocols are thesowe are looking for in terms of
practical implementations. That is why we in this paper hanaposed to weaken the requirement

2170 be specific here, all occurrences of “guaranteed enexfeations” in this and the next paragraph refer to those
envy-free-relations that are guaranteed to exist afterigiey some cake-cutting protocahd in addition, subsequently,
performing trades that are guaranteed to be feasiflhis is in contrast with what we mean by this term anywhese el
in the paper; “guaranteed envy-free-relations” usualfgnseto those envy-free-relations that are guaranteediso a&fer
executing the protocol only.

22Quite remarkably, without any trading actions and withawbiving, e.g., the Selfridge—Conway protocol the Last
Diminisher protocol achieves with its DGEF almost (beinfyafly by one) the trading- and Selfridge—Conway-related
bound of 3+ n(n-1)/2 mentioned above.
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of envy-freeness (as much as needed and as little as pgssihlk insisting on finite boundedness.
To this end, we introduced the notion of degree of guaranteegl-freeness for proportional cake-
cutting protocols. Based on this definition, we gave a suofalie DGEF in existing finite bounded
proportional cake-cutting protocols, which shows that wbae is trying to approximate the ideal
of envy-freeness via the DGEF, there is quite a bit room fqrimements. In particular, we expect
that the concept of DGEF is suitable to extend the scope &dévelopment of new finite bounded
cake-cutting protocols by allowing to approximate envgefiess step by step. In this context, we
proposed a new finite bounded proportional cake-cuttingppod, explicitly demonstrated for= 4
and for arbitraryn > 3, which provides a significantly enhanced degree of guaeahénvy-freeness,
compared with the status quo given by the survey in Table & w0 Sectiofi]5). In particular,
our protocol hagn/2] —1 more guaranteed envy-free-relations than the Last Daiéri protocol,
which previously was the best finite bounded proportion&kezutting protocol with respect to the
DGEF. To achieve this significantly enhanced DGEF, our maltmakes use of parallelization with
respect to the leftmost and the rightmost pieces. In thiartegadjusting the values of the pieces
to be marked froni/n to /s (with s players still in the game) and applying an appropriate mner
loop procedure is crucial to make the parallelization wdrkaddition to an enhanced DGEF, our
protocol still has the other useful properties the Last Disfier protocol is known to possess, such
as strategy-proofness.

In general, we suggest to target improvements on the “levehay-freeness” already in the
design of cake-cutting protocols rather than trying to ioveron the number of envy-free-relations
afterwards for the division obtained (e.g., via trading @< Cha886]). In terms of future research,
this approach encourages to develop new protocols with leigdrer degrees of guaranteed envy-
freeness—one may even think of maodifications that focus endévelopment of protocols with
“balanced envy-freeness” while keeping the DGEF high.
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