Skip to main content

Approximate Pure Nash Equilibria via Lovász Local Lemma

  • Conference paper
Internet and Network Economics (WINE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5929))

Included in the following conference series:

  • 2497 Accesses

Abstract

In many types of games, mixed Nash equilibria is not a satisfying solution concept, as mixed actions are hard to interpret. However, pure Nash equilibria, which are more natural, may not exist in many games. In this paper we explore a class of graphical games, where each player has a set of possible decisions to make, and the decisions have bounded interaction with one another. In our class of games, we show that while pure Nash equilibria may not exist, there is always a pure approximate Nash equilibrium. We also show that such an approximate Nash equilibrium can be found in polynomial time. Our proof is based on the Lovász local lemma and Talagrand inequality, a proof technique that can be useful in showing similar existence results for pure (approximate) Nash equilibria also in other classes of games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The probabilistic method. In: Discrete Math and Optimization. Wiley-Interscience Ser. Wiley, New York (1992)

    Google Scholar 

  2. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-Optimal Network Design with Selfish Agents. Theory of Computing 4, 77–109 (2008)

    Article  MathSciNet  Google Scholar 

  3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: FOCS 2004 (2004)

    Google Scholar 

  4. Azuma, K.: Weighted sums of certain dependent random variables. Tokuku Math. J. 19, 357–367 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Deng, X.: Settling the Complexity of 2-Player Nash-Equilibrium. In: FOCS 2006 (2006)

    Google Scholar 

  6. Daskalakis, C., Papadimitriou, C.: Computing Nash in graphical games via Markov random field. In: EC 2006 (2006)

    Google Scholar 

  7. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in Approximate Nash Equilibria. In: EC 2007 (2007)

    Google Scholar 

  8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.: The Complexity of Computing a Nash Equilibrium. In: STOC 2006 (2006)

    Google Scholar 

  9. Elkind, E., Goldenberg, L.A., Goldenberg, P.W.: Nash Equilibria in Graphical Games on Tree Revisited. In: EC 2006 (2006)

    Google Scholar 

  10. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. In: Hajnal, A., Rado, R., Sós, V.T. (eds.) Infinite and finite sets (to Paul Erdős on his 60th birthday), vol. II, pp. 609–627. North-Holland, Amsterdam (1975)

    Google Scholar 

  11. Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: STOC 2004 (2004)

    Google Scholar 

  12. Hastad, J.: Some optimal inapproximability results. Journal of ACM 48, 798–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 713–721 (1963)

    Article  MathSciNet  Google Scholar 

  14. Kearns, M., Littman, M., Singh, S.: Graphical models for game theory. In: UAI (2001)

    Google Scholar 

  15. Kearns, M.: Graphical Games. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  16. Moser, R.: A Constructive Proof of the Lovász Local Lemma. In: STOC 2009 (2009)

    Google Scholar 

  17. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International journal of Game Theory 2, 65–67 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Skopalik, A., Vöcking, B.: Inapproximability of Pure Nash Equilibria. In: STOC 2008 (2008)

    Google Scholar 

  19. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de L’IHÉS 81, 73–205 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Vetta, A.: Nash equilibria in competitive societies with applications to facility location, traffic routing and auctions. In: FOCS 2002 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, T., Tardos, É. (2009). Approximate Pure Nash Equilibria via Lovász Local Lemma. In: Leonardi, S. (eds) Internet and Network Economics. WINE 2009. Lecture Notes in Computer Science, vol 5929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10841-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10841-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10840-2

  • Online ISBN: 978-3-642-10841-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics