On the Impact of Strategy and Utility Structures
on Congestion-Averse Games

Thomas Voice!, Maria Polukarov!, Andrew Byde?, and Nicholas R. Jennings'

1 School of Electronics and Computer Science,
University of Southampton, UK
tdv,mp3,nrj@ecs.soton.ac.uk

2 Hewlett-Packard Laboratories, Bristol, UK
andrew.bydeC@hp.com

Abstract. Recent results regarding games with congestion-averse utilities (or, congestion-averse
games—CAGs) have shown they possess some very desirable properties. Specifically, they have
pure strategy Nash equilibria, which may be found by a polynomial time algorithm. However,
these results were accompanied by a very limiting assumption that each player is capable of using
any subset of its available set of resources. This is often unrealistic—for example, resources may
have complementarities between them such that a minimal number of resources is required for any
to be useful. To remove this restriction, in this paper we prove the existence and tractability of a
pure strategy equilibrium for a much more general setting where each player is given a matroid
over the set of resources, along with the (upper and lower) bounds on the size of a subset of
resources to be selected, and its strategy space consists of all elements of this matroid that fit
in the given size range. (This, in particular, includes the possibility of having a full matroid, or
having a set of bases of a matroid.) Moreover, we show that if a player strategy space in a given
CAG does not satisfy these matroid properties, then a pure strategy equilibrium need not exist,
and in fact the determination of whether or not a game has a pure strategy Nash equilibrium is
NP-complete. We further prove analogous results for each of the congestion-averse conditions on
utility functions, thus showing that current assumptions on strategy and utility structures in this
model cannot be relaxed anymore.

1 Introduction

Congestion games—in which self-interested players strategically choose from a common set of
resources and derive individual utilities that depend on the total congestion on each resource—
are fundamental to a wide range of applications. Examples include resource and task allocation,
firm competition for production processes, routing problems, network design, and other kinds
of resource sharing scenarios in distributed systems [8, 15, 16].

Such games are important because Rosenthal [15] showed that they always possess Nash
equilibria in pure strategies. This follows by a potential function argument [10], implying that
such an equilibrium can be reached in a natural way when players iteratively (and unilaterally)
improve their strategies in response to the others’ choices. However, such a sequence of (even
maximal, or, best) responses may take an exponential number of iterations, as is shown in [4]. In
fact, it is PLS-complete to compute a pure strategy equilibrium for general congestion games.
Motivated by this fact, much recent effort in algorithmic game theory has gone into study
of interesting subclasses of congestion games that are computationally tractable. These, for
example, include singleton (or, resource selection) congestion games [5], in which each player
is restricted to choosing a single resource, and a more general class of matroid congestion



games [1], in which players choose among the bases of a matroid over the set of resources.
Note, however, that in both cases only strategies (i.e., sets) of the same cardinality are allowed
(respectively, 1 or the rank of the matroid).

Congestion games have been extensively studied in a variety of contexts in computer science
and economics, giving rise to several extensions of the original model. In particular, the models
for local-effect games [6], ID-congestion games [9], player-specific [7] and weighted congestion
games [7]—in which a player’s payoff is effected by the number, identities or weights of players
choosing its selected or neighboring resources—have been considered. However, such games
have been constrained to use utility functions that are linear sums with respect to resources,
and assumed full reliability and synchronicity of services. More recently, additional general-
izations [11-14] dealt with the possibility that resources may fail to execute their assigned
tasks, or with the actual order in which the tasks are executed, thus incorporating non-linear
and non-additive utility functions in the context of congestion games. These models, however,
assumed mutual independence among the resources and imposed particular structures on the
players’ strategy spaces.

Generalising beyond problem classes with desirable properties raises the important question
of developing meaningful criteria that have to be satisfied in order to guarantee that these
properties are still present in the generalised model. Given the fact that congestion games have
pure-strategy equilibria, we are interested in the question of how far such a sufficient criterion
for the existence of pure strategy Nash equilibria can go, and which properties would ensure
polynomial complexity of such equilibria.

To this end, Byde et al [2] provided a very general framework that, in particular, includes
the abovementioned models of congestion games with faulty or asynchronous resources and
player-specific congestion games in the superclass called games with congestion-averse utili-
ties (or, congestion-averse games—CAGs). In a CAG, the payoff of a player is determined
by the vector of resource congestion (thus capturing the possibility of mutual dependencies
among the resources), via any real-valued function that satisfies certain “congestion-averse”
conditions—i.e., monotonicity, submodularity and independence of irrelevant alternatives. The
authors proved the existence of a pure strategy Nash equilibrium in these games and provided
a polynomial time algorithm for its computation. This result was based on the single profitable
move property (SPMP) of these games, implying that a strategy profile is a Nash equilibrium
if and only if it is stable under adds, drops or switches with a single resource. The congestion-
averse assumptions have been shown to be minimal to guarantee the existence of this property.
However, the question of necessity of these assumptions for the existence of a pure strategy
Nash equilibrium remained open. Also, though the model of CAGs captures a wide range of
important scenarios, it assumes that a player is capable of using any subset of its accessible
set of resources, which is unrealistic in many real-life situations, in which, for example, only
certain sets of resources are useful in combination.

Our contribution. Given this motivation, we show that the analysis of Byde et al [2] can be
generalised even further, towards what we call Matroid Congestion-Averse Games, or MCAGs,
in which the set of strategies of each player consists of all the sets within a certain size range
from a matroid. This, in particular, includes (but is not restricted to) the possibilities of having
a full power set over any subset of resources (as in CAGs [2]), or any other matroid, or having



a set of elements of a fixed size—for instance, singletons (as in resource selection games [5]) or
bases of a matroid (as in matroid congestion games [1]).

For this setting, we prove that all such games have the SPMP and possess at least one equi-
librium in pure strategies. We give an algorithm which converges on an equilibrium, with time
limits polynomial in the number of players and resources in the game. Essentially, we extend
all the previous results on CAGs, weakening the bounds on algorithm running time. We further
complete these results by showing that under various relaxations of the matroid or congestion-
averse assumptions, these properties are no longer present, and in fact the determination of
whether or not a game has a pure strategy Nash equilibrium is NP-complete.

Most of the proofs are omitted, due to space limitations.

2 Notation and Background

Consider a congestion setting (or, domain) with a finite set N = {1,..., N} of players and a
finite set R = {rq,...,7R} of resources. A player i’s strategy is to choose a subset of resources
from R, and every N-tuple of strategies 0 = (0;);en corresponds to an R-dimensional con-
gestion vector h(c) = (h,(0)),cg Where h,(o) is the number of players who select resource r
(we drop the profile to give h, when it’s clear which profile is under consideration). For any
player i € N, its personalised vector of congestion, h(c), is defined to be a vector in N that
coincides with h(c) for all the resources that have been selected by ¢ and that has zero entries
for all of its unselected resources: that is, k(o) = h,(0) if r € o; and hl (o) = 0 otherwise. For
a vector h € N the “support” of h, S(h) C {1,..., R}, is defined as {; : hy; > 0}. The utility
of player i in a congestion setting is given by a function U; : N® — R that assigns a real value
to a (personalised) vector of congestion.?

Games with congestion-averse utilities A utility function is congestion-averse if it (i)
monotonically decreases with respect to increasing congestion, (ii) is submodular in that the
“better” collection of resources a player uses—the less incentive it has to add new resources,
and (iii) is independent of irrelevant alternatives (i.e., if a player “prefers” one resource over
another at their current congestion levels, then it still does so no matter what other changes
are made to any other resources). Formally, given a strategy profile o and a set of elementary
changes (or, single moves) defined on o as follows:

— add A;(r)—player i adds an unselected resource r: o} = o; U {r},

— drop D;(r)—player i drops a selected resource r: o} = o; \ {r},

— switch S;(ry <« r_)—player ¢ switches resources by adding resource ry and dropping
resource r_ (note that S;(ry « r_) = A;(ry) + Di(r_)*),

a utility function U : N¥ — R is said to be congestion-averse if it satisfies:

3 Note that the player’s utility only depends on the numbers of players choosing each resource but not on
their identities—that is, we consider anonymous settings (see [3] for results on approximating equilibria in
anonymous games).

4 Here and in what follows, “+” should be understood to mean sequential execution, read left-to-right. We
also use this notation to indicate elementary changes applied to strategy profiles: e.g., o + D denotes a drop
applied to profile o.



— monotonicity: If S(h) = S(h') and Vr, h, > h., then U(h) < U(K');

— submodularity: Improving a resource selection by either (i) profitable switches, (ii) ex-
tending the set of utilised resources or (iii) reducing congestion on them does not make new
adds more profitable, or drops less profitable; likewise, unprofitable switches, deleting the
resources or increasing the congestion does not make drops more profitable, or adds less

profitable. Equivalently, for any h, " and h” such that |S(h)| =1 and S(h) € S('), S(h"),
Ulh+ 1) —UWR) <Uh +h") — UR"),

if either (i) [S(A)\ S(R")| = |S(K")\ S(h')] =1 and U(K') > U(h"), (ii) S(h") C S(R') and
h;" = h;' for any j € S(h”), or (iii) S(h’') = S(h") and A’ < h”; and
— independence of irrelevant alternatives: If S;(r; « r_) is a profitable switch for

player i given profile o, then it is profitable for ¢ from any other profile ¢’ satisfying
r_ €oj, 4 ¢ 0l hy_(0) =h_(0') and hy, (o) = hy, (o).

A congestion-averse game (CAG) is a game in the congestion domain with congestion-averse
utility functions, where each player ¢ € N has a subset R; C R of R; € N accessible resources,
and its strategy space, X, is given by a power set of R;.

3 Matroid congestion-averse games

In this section, we extend the model of games with congestion-averse utilities to encompass
more general and complex player strategy spaces, which we loosely build on matroids. Before
we give a formal definition of such games, we briefly introduce matroids.®

Definition 1. A matroid, M, is a collection of subsets of some set of elements X, with the
property that if some Y C X is in M then all subsets of Y are in M. Further, if V € M is
such that |V| < |Y| then there exists some a € Y \'V such that V U {a} € M.

A matroid congestion-averse game (MCAG) is now defined as a game in the congestion domain
with congestion-averse utility functions, over strategy spaces where each player i is given a
matroid M; and integers n; < m;, and its strategy space consists of all the subsets X € M;
such that n; < |X| < m;. More precisely,

Definition 2. An MCAG I' = (N, R, (Ui(+));en) consists of a set N of N € N players, a
set R of R € N resources, and for each player i a matroid M; over R, integers n; < my;, and
a congestion-averse utility function U; : N® — R. The strategy space for each player i € N is
the set of all the subsets X € M; satisfying n; < |X| < m;, and the payoff to the player from
a combination of strategies o is u;(0) = U;(hi(0)), where h'(c) is i’s personalised vector of
congestion as determined by o.

Remark 1. Note that our strategy structures cover (but are not restricted to) the possibilities
of having a power set over any subset of resources, either including or excluding the empty
set (as in CAGs), or any other matroid (full or incomplete), or having a set of elements of a
fixed size—for example, a set of singletons (as in resource selection games) or a set of bases of
a matroid (as in matroid congestion games).

® For a detailed discussion of matroids, we refer the reader to [17].



Interestingly, as we show below, the CAG technique based on particular “ladders” of elementary
changes, appears to be universal enough to capture the matroid case. Recall, however, that this
method builds heavily on several properties, including (i) the single profitable move property,
(ii) the existence of a strategy profile which is stable to both switches and adds (and a method
to find such), and (iii) the possibility to rank resources by their attraction to a player, that
easily follows from the fact that any elementary change is available to any player at any strategy
profile. For MCAGs, however, the existence of these properties is not at all obvious. We start
with their proofs in the following subsection.

3.1 Preliminary results

The single profitable move property. We first show that the matroid congestion-averse
games have the SPMP—the single profitable move property, implying that a profile is in equi-
librium if and only if it does not admit profitable elementary changes. We begin with a lemma.

Lemma 1. Given a strategy profile of an MCAG, a player’s strategy is a (strict) best response
within the subspace of strategies of the same size, if and only if no (strictly) profitable switch
from this strategy is available to the player. Indeed, given a profile o, suppose some player i has
any alternative strategy o} such that |o;| = |o}| and player i would (strictly) prefer o over o;.
Then, there is some r4 € 0, \ 0; and r— € 0; \ 0, such that the switch S(ry « r_) is (strictly)
profitable for player i at o.

We can now prove the single profitable move property for MCAGs.

Theorem 1. Given an MCAG, a strategy profile o is a Nash equilibrium if and only if there
are no (mazimal) strictly profitable switches, drops or adds.

A strategy profile o is termed as A-stable (D-stable, S-stable) if it admits no maximally prof-
itable adds (drops, switches); likewise for AS-stable, DS-stable and so on. Thus, the SPMP
states that a profile is in equilibrium if and only if it is ADS-stable.

The SPMP has been used to develop techniques for finding pure strategy equilibria in
CAGs and several of their subclasses. These methods used particular dynamics of elementary
changes that initialised with a strategy profile which is either AS- or DS-stable. Indeed, since
in CAGs a player is allowed to use any subset from its set of accessible resource, the existence
of such a profile follows trivially—all the players just play the full or the empty set. However,
this strategy may not be available for a general MCAG. Nevertheless, as we shall show, every
such a game possesses a strategy profile (or, a “state”) which is stable under adds and switches.

Finding an AS-stable state. First, we prove the following theorem.

Theorem 2. Given an MCAG, consider P the set of pairs consisting of a single resource and
a congestion level on that resource. For each player i, there exists a ranking function Vi(-) on
P such that for any congestion vector h and strategy o, if there is a switch S(r; < ) available
to player i then Vi(rj, hj + 1) < Vi(rg, hi) if and only if the switch S(r; < 1) is profitable.

Corollary 1. Any best response dynamics within the reduced space where each player is re-
stricted to the mazimal size strategies, will terminate in an AS-stable state within N?>R? moves.



Proof. Given an MCAG, we create a congestion game by restricting each player i to the
strategies in M; with m; elements, and setting player 4’s utility as the sum of V;(-) for resources
selected by player i. Now, clearly this congestion game has the SPMP, as does the original
MCAG, and furthermore, any profitable switch in the derived congestion game is a profitable
switch in the original MCAG. Moreover, Lemma 1 implies that any best response move in
the derived congestion game corresponds to a best response in the original MCAG, within
the reduced strategy space. This means that a pure strategy Nash equilibrium in the derived
congestion game will also be an AS-stable pure strategy in the original MCAG. The corollary
then follows from the results in [1].

Remark 2. In games with fixed size strategies—like singleton or matroid congestion games—
drops are never available. So, any AS-stable strategy profile is also a Nash equilibrium. For
such games, the above corollary proves the existence of, and provides a method for finding, a
pure strategy Nash equilibrium.

Dynamics. Given the existence of an AS-stable state, we now explore the convergence for
matroids of the drop- and swap-dynamics, as defined in [2]. We start with a brief definition of
drop- and swap-ladders, and then proceed and describe their properties in MCAGs.

Definition 3. A drop ladder is a sequence D;,(ro) + Si (1} «— r1) + -+ Si,, (rl, < Tm),
consisting of a maximally profitable drop followed by a sequence of m > 0 mazimally profitable
switches, and a swap ladder is a drop-ladder followed by a maximally profitable add with its
tail: Dy (ro) +Si, (o <= r1) + -+ Sip, (rm—1 < Tm) + A, (). The swap ladder is described
as minimal if all intermediate strategy profiles before the last add were A-stable (i.e., if the
add is performed at the first opportunity).

Note that the above definition of a swap ladder implies that a profitable add is made to the
tail of the corresponding drop ladder. This is well defined by the following lemma.

Lemma 2. Given a CAG, let o be an AS-stable strategy profile that possesses a drop ladder of
length m, and let o denote the result of applying the drop and the first k switches to o. Suppose
further that for each o* for 1 < k < m there are no profitable adds. Then, for all 1 < k < m,
the only switches which are profitable at o* are those which “chain” with the previous switch
or the wnitial drop, i.e. those who switch in the resource which was most recently dropped or
switched out. Furthermore, if there is a profitable add A;(ry.) for profile c™ then ri = rp,.

Thus, the result of a swap ladder possesses the same congestion vector as the original profile;
as we shall see, this will imply that minimal swap ladders preserve AS-stability. The result will
follow from Lemma 3 below:

Lemma 3. Consider the sequence of adds, drops and switches that a single player makes in
a sequence of minimal swap ladders. For each player, we rank the resources according to the
ranking function defined in Theorem 2, using the fixed congestion levels present between swap
ladders. Then, (i) if the ranks of resources a player has selected are put in decreasing order,
then this set of values increases lexicographically with every switch; (ii) every add must add a
resource that is strictly higher ranked than the resource most recently dropped; (iii) the ranks
of dropped resources are non-decreasing.



Corollary 2. There can be no more than NR(R+2) elementary changes in total in any se-
quence of minimal swap ladders.

Proof. For a given player ¢ with strategy o;, let us denote the multiset of ranks of resources
in oy, according to the personal ranking of player i, as K;. We extend K; to be an R element
multiset by adding R — |o;| entries of a rank 0, which we formally define as being below all
other ranks. Let V(K;) be the values of K listed in decreasing order.

Through a series of swap ladder moves, we allow K; to change as the strategy of player ¢
changes. If player ¢ performs a switch, then the rank in K; corresponding to the switched out
resource is replaced with the rank of the switched in resource. If player ¢ performs a drop, then
all elements of K; which do not refer to resources in the current strategy, are set equal to the
rank of the dropped resource. If player ¢ adds a resource, then one of the elements of K; which
no longer refers to a resource in player ¢’s strategy is changed to refer to the rank of the new
resource. Lemma 3 ensures that each of these moves causes an increase in the lexicographical
rank of the values of V(K;).

Now, K; has R elements taken from a set of R+ 1 ranks, so there can be at most R(R+1)/2
strict increases in lexicographical rank of V(K;). Every swap ladder action causes a strict
increase, apart from drops. There cannot be R more drops than there are adds. Thus, the total
number of swap ladder actions possible is bounded above by R plus twice R(R + 1)/2.

3.2 Main Results

We are now ready to conclude the existence and tractability of a pure strategy Nash equilibrium
in MCAGs. The following proposition, coupled with Corollary 2, implies our main result.

Proposition 1. Applying a minimal swap ladder to an AS-stable state preserves AS-stability.
Theorem 3. Fvery MCAG has a pure strategy Nash equilibrium.

Proof. We have shown there is at least one AS-stable strategy profile. If we continually apply
minimal swap ladders to an AS-stable strategy profile, then, since the number of minimal swap
ladder moves is bounded, we will eventually reach an AS-stable strategy profile to which no
minimal swap ladder may be applied. If this AS-stable strategy profile is not D-stable, then
we can apply a maximal drop ladder. Since the drop ladder is maximal, the resulting state is
S-stable. Furthermore, the resulting state, and every intermediate state along the drop ladder
must be A-stable because there were no swap ladders which could be applied to the starting
AS-stable state. As long as we have an AS-stable profile which is not D-stable, we can repeat
this process. Every time we do so, we reduce the total congestion by one, and thus we can only
repeat the process at most VR times. Once we can no longer apply a minimal swap ladder or
a maximal drop ladder, we have a pure strategy Nash equilibrium.

4 Necessity of the MCAG model assumptions

In this section we complete our results on congestion-averse games, by demonstrating that
the strategy space and utility function assumptions in our model cannot be further relaxed.
Specifically, we will show that if any of the (ranged) matroid or the congestion-averse properties
is removed, a pure strategy equilibrium is not guaranteed to exist, and in fact the determination
of whether or not a game has such an equilibrium is NP-complete.



4.1 Non-matroid congestion-averse games

In an MCAG, each player has a strategy space which consists of all the sets within a certain
size range from a matroid. This can be expressed equivalently with the following.

Suppose a player has a strategy space S. Then, for all X # Y in S, the following two
assumptions hold: (i) if | X| = |Y| then for each element x € X there is an element y € Y such
that (X \ {z})U{y} € S; (ii) if | X| < |Y| then all |X| element subsets of Y are in S. This is
termed as the ranged matroid property.

We will show that if we relax any of these assumptions then a pure strategy equilibrium
is no longer guaranteed and, in fact, the determination of whether or not a pure strategy
equilibrium exists is not tractable. This follows by a reduction argument using the 3-SAT
problem which is well known to be NP-complete.

Theorem 4. In an MCAG setting, violation of either of the ranged matroid assumptions on
strategy spaces may result in a game with no pure strategy equilibria. Moreover, it is in general
NP-complete to determine whether a game possesses such an equilibrium.

4.2 Non-congestion-averse utilities

Here we present similar results on the congestion-averseness assumptions on utility functions.
Specifically, we show that violation of any of these assumptions (or even partial relaxation of
submodularity) may result in a game with no pure strategy equilibrium, and reduce from the
3-SAT to show NP-hardness of the equilibrium existence decision problem.

Theorem 5. In an MCAG setting, if any one of the congestion-averse conditions on utility
functions is violated then a pure strategy Nash equilibrium is not guaranteed to exist. Moreover,
there are instances of games in which it is NP-complete to determine its existence. This also
applies to the case in which the submodularity assumption is only partially violated, that is
either parts (i) and (iii) or part (ii) of the assumption hold.

5 Conclusions

We investigated the impact of the strategy space and payoff function structures on games
with congestion-averse utilities. We extended the previous positive results on the existence and
tractability of pure strategy equilibria to the case, in which the set of strategies of each player
consists of all the sets within a certain size range from a matroid. This covers a wide range
of settings, including those where the players’ strategies are represented by singletons, bases
of matroids, and power sets over a set of accessible resources. Our result is tight in that the
relaxation of the (ranged) matroid property or each of the congestion-averseness conditions
may lead to a game without a pure strategy equilibrium, and it is in general NP-complete to
determine the existence of such an equilibrium. Thus, we conclude that the current assumptions
on strategy and utility structures in this model cannot be further relaxed.
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