Abstract
Showing that a circuit is satisfiable without revealing information is a key problem in modern cryptography. The related (and more general) problem of showing that a circuit evaluates to a particular value if executed on the input contained in a public commitment has potentially multiple practical applications. Although numerous solutions for the problem had been proposed, their practical applicability is poorly understood.
In this paper, we take an important step towards moving existent solutions to practice. We implement and evaluate four solutions for the problem. We investigate solutions both in the common reference string model and the random oracle model. In particular, in the CRS model we use the recent techniques of Groth–Sahai for proofs that use bilinear groups in the asymmetric pairings environment. We provide various optimizations to the different solutions we investigate. We present timing results for two circuits the larger of which is an implementation of AES that uses about 30000 gates.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Conference on Computer and Communication Security – CCS 1993, pp. 62–73. ACM, New York (1993)
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Symposium on Theoretical Computer Science – STOC 1988, pp. 103–112. ACM, New York (1988)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. Journal of Cryptology 13, 449–472 (2000)
Brickell, E., Gordon, D., McCurley, K., Wilson, D.: Fast exponentiation with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)
Camenisch, J., Hohenberger, S., Pedersen, M.: Batch verification of short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007)
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
Cramer, R., Damgård, I.: Zero-knowledge proofs for finite field arithmetic, or: Can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
Damgård, I.: Non-interactive circuit based proofs and non-interactive proofs of knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993)
De Santis, A., Di Crescenzo, G., Persiano, G.: Non-interactive zero-knowledge: A low-randomness characterization of NP. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 271–280. Springer, Heidelberg (1999)
De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness-optimal characterization of two NP proof systems. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 179–193. Springer, Heidelberg (2002)
Feige, U., Lapidot, D., Shamir, A.: Non-interactive zero-knowledge proofs based on a single random string. In: Symposium of Foundations of Computer Science – FOCS 1990, pp. 308–317 (1990)
Galraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)
Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint Archive, Report 2006/172 (2006), http://eprint.iacr.org/2006/172/
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)
Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-interactive zero-knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)
Groth, J., Ostrovsky, R., Sahai, A.: New techniques for non-interactive zero-knowledge. Full version of [18] and [19], http://www.brics.dk/~jg/NIZKJournal3.ps
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)
Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52, 4595–4602 (2006)
Kilian, J., Petrank, E.: An efficient non-interactive proof system for NP with general assumptions. Journal of Cryptology 11, 1–27 (1998)
Nguyen, K.Q., Bao, F., Mu, Y., Varadharajan, V.: Zero-knowledge proofs of possession of digital signatures and its applications. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 103–118. Springer, Heidelberg (1999)
Okamoto, T.: Provable secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)
Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)
SECG. Standards for Efficient Cryptography, SEC 2: Recommended elliptic curve domain parameters, http://www.secg.org .
Szydlo, M.: Risk assurance for hedge funds using zero knowledge proofs. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 156–171. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ghadafi, E., Smart, N.P., Warinschi, B. (2009). Practical Zero-Knowledge Proofs for Circuit Evaluation. In: Parker, M.G. (eds) Cryptography and Coding. IMACC 2009. Lecture Notes in Computer Science, vol 5921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10868-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-10868-6_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10867-9
Online ISBN: 978-3-642-10868-6
eBook Packages: Computer ScienceComputer Science (R0)