Skip to main content

Distributed Privacy-Preserving Methods for Statistical Disclosure Control

  • Conference paper
Data Privacy Management and Autonomous Spontaneous Security (DPM 2009, SETOP 2009)

Abstract

Statistical disclosure control (SDC) methods aim to protect privacy of the confidential information included in some databases, for example by perturbing the non-confidential parts of the original databases. Such methods are commonly used by statistical agencies before publishing the perturbed data, which must ensure privacy at the same time as it preserves as much as possible the statistical information of the original data.

In this paper we consider the problem of designing distributed privacy-preserving versions of these perturbation methods: each part of the original database is owned by a different entity, and they want to jointly compute the perturbed version of the global database, without leaking any sensitive information on their individual parts of the original data. We show that some perturbation methods do not allow a private distributed extension, whereas other methods do. Among the methods that allow a distributed privacy-preserving version, we can list noise addition, resampling and a new protection method, rank shuffling, which is described and analyzed here for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proc. of CCS 2007, pp. 486–497. ACM Press, New York (2007)

    Chapter  Google Scholar 

  2. CASC: Computational Aspects of Statistical Confidentiality, European Project IST-2000-25069, http://neon.vb.cbs.nl/casc

  3. Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Dalenius, T., Reiss, S.P.: Data-swapping: a technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Defays, D., Anwar, M.N.: Micro-aggregation: a generic method. In: Proc. of the 2nd International Seminar on Statistical Confidentiality, pp. 69–78 (1995)

    Google Scholar 

  7. Data Extraction System, U.S. Census Bureau, http://www.census.gov

  8. Domingo-Ferrer, J., Torra, V.: Disclosure control methods and information loss for microdata. In: [10], pp. 91–110 (2001)

    Google Scholar 

  9. Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control methods for microdata. In: [10], pp. 111–133 (2001)

    Google Scholar 

  10. Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (eds.): Confidentiality, disclosure, and data access: theory and practical applications for statistical agencies. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  11. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Dwork, C., Yekhanin, S.: New efficient attacks on statistical disclosure control mechanisms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 469–480. Springer, Heidelberg (2008)

    Google Scholar 

  13. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Heer, G.R.: A bootstrap procedure to preserve statistical confidentiality in contingency tables. In: Proc. of the 1st International Seminar on Statistical Confidentiality, pp. 261–71 (1993)

    Google Scholar 

  15. Jagannathan, G., Wright, R.: Privacy-preserving distributed k- means clustering over arbitrarily partitioned data. In: Proc. of KDD 2005, pp. 593–599 (2005)

    Google Scholar 

  16. Kim, J.J.: A method for limiting disclosure in microdata based on random noise and transformation. In: Proc. of the ASA Section on Survey Research Methodology, pp. 303–308 (1986)

    Google Scholar 

  17. Lane, J., Heus, P., Mulcahy, T.: Data access in a cyber world: making use of cyberinfrastructure. Transactions on Data Privacy 1(1), 2–16 (2008)

    Google Scholar 

  18. Nin, J., Herranz, J., Torra, V.: Rethinking rank swapping to decrease disclosure risk. Data & Knowledge Engineering 64(1), 346–364 (2008)

    Article  Google Scholar 

  19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  20. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herranz, J., Nin, J., Torra, V. (2010). Distributed Privacy-Preserving Methods for Statistical Disclosure Control. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., Roudier, Y. (eds) Data Privacy Management and Autonomous Spontaneous Security. DPM SETOP 2009 2009. Lecture Notes in Computer Science, vol 5939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11207-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11207-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11206-5

  • Online ISBN: 978-3-642-11207-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics