Skip to main content

Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 272))

Summary

Many real world optimization problems are dynamic. On the other hand, there are many optimization problems whose solutions must optimize several objectives that are in conflict. In these dynamic multi-objective problems the concept of optimum must be redefined, because instead of providing only one optimal solution, the procedures applied to these multi-objective optimization problems should obtain a set of non-dominated solutions (known as Pareto optimal solutions) that change with time. As evolutionary algorithms steer a population of solutions in a concurrent way by making use of cooperative searching techniques, it could be relatively direct to adapt these algorithms to obtain sets of Pareto optimal solutions. This contribution deals with parallel evolutionary algorithms on dynamic multi-objective optimization (DMO) problems. In this kind of problems, the speed of the reaction to changes is a quite important topic in the context of dynamic optimization, and high-performance computing approaches, such as parallel processing, should be applied to meet the given solution constraints and quality requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alba, E., Saucedo, J.F., Luque, G.: A Study of Canonical GAs for NSOPs. In: Panmictic versus Decentralized Genetic Algorithms for Non-Stationary Problems, ch. 13, pp. 246–260. Springer, Heidelberg (2007)

    Google Scholar 

  3. Branke, J., Mattfeld, D.C.: Anticipation and flexibility in dynamic scheduling. International Journal of Production Research 43(15), 3103–3129 (2005)

    Article  Google Scholar 

  4. Cámara, M., Ortega, J., de Toro, F.J.: A diversity enhanced single front multiobjective algorithm for dynamic optimization problems. In: Proceedings of the 1st International Conference on Metaheuristics and Nature Inspired Computing, META 2008 (2008)

    Google Scholar 

  5. Cámara, M., Ortega, J., de Toro, F.J.: Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of The 21st International Parallel and Distributed Processing Symposium, IPDPS 2007 (2007), doi:10.1109/IPDPS.2007.370433

    Google Scholar 

  6. Coello, C.A.C., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)

    MATH  Google Scholar 

  8. Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE Trans. on Evolutionary Computation 8, 425–442 (2004)

    Article  Google Scholar 

  10. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1201–1208. ACM, New York (2006)

    Chapter  Google Scholar 

  11. Horn, J., Nafpliotis, N.: Multiobjective Optimization using the Niched Pareto Genetic Algorithm. Tech. Rep. IlliGAl Report 93005, Urbana, Illinois, USA (1993)

    Google Scholar 

  12. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Trans. on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  13. Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 98–105. IEEE Press, Mayflower Hotel (1999)

    Google Scholar 

  14. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  15. Li, X., Branke, J., Kirley, M.: On performance metrics and particle swarm methods for dynamic multiobjective optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 576–583 (2007)

    Google Scholar 

  16. Luna, F., Nebro, A.J., Alba, E.: Parallel evolutionary multiobjective optimization. In: Nedjah, N., de Macedo Mourelle, L., Alba, E. (eds.) Parallel Evolutionary Computations. Studies in Computational Intelligence, vol. 22, pp. 33–56. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary optimization of dynamic multiobjective functions. In: Interner Bericht des Sonderforschungsbereichs 531. Computational Intelligence CI–204/06, Universität Dortmund (2006)

    Google Scholar 

  18. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the feedback thermodynamical genetic algorithm. In: PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, pp. 149–158. Springer, London (1998)

    Chapter  Google Scholar 

  19. Morrison, R.: Performance measurement in dynamic environments. In: Branke, J. (ed.) GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 5–8 (2003)

    Google Scholar 

  20. de Toro, F.J., Ortega, J., Ros, E., Mota, S., Paechter, B., Martn, J.M.: PSFGA: Parallel processing and evolutionary computation for multiobjective optimisation. Parallel Computing 30, 721–739 (2004)

    Google Scholar 

  21. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environments. In: Proceedings of the Congress on Evolutionary Computation CEC 1999, pp. 1843–1850. IEEE Press, Piscataway (1999)

    Chapter  Google Scholar 

  22. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Ph.D. thesis, Wright-Patterson AFB, OH (1999)

    Google Scholar 

  23. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. on Evolutionary Computation 7, 144–173 (2003)

    Article  Google Scholar 

  24. Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., da Fonseca, V.G.: Why quality assessment of multiobjective optimizers is difficult. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 666–674. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003), http://www.tik.ee.ethz.ch/sop/publicationListFiles/ztlf2002a.pdf

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cámara, M., Ortega, J., de Toro, F. (2010). Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds) Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11218-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11218-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11217-1

  • Online ISBN: 978-3-642-11218-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics