Abstract
Enhancing the the effectiveness of web-based eduction has become one of the most important concerns within both educational engineering and information system fields. The development of information technologies has contributed to the growth in elearning as an important education method. This learning environment enables learners to participate in ’any time, any place’ personalized training. It has been known that the application of data mining and computational intelligent approaches can provide better learning environments, and in their effort to participate in this field, the authors introduced this study which consists in its first part of a survey of the applications of data mining and computational intelligence in web based education during (2004-2009), and the second part is a case study that aims to analyze students’ activities performed in a Learning Management System.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abe, S., Nakata, S., Kigoshi, T., Mochizuki, H.: Designing and developing multilingual e-learning materials: Tufs language education pronunciation module - introduction of a system for learning japanese language pronunciation. In: ICALT, p. 462 (2003)
Abonyi, J., Balasz, F., Abraham, A.: Computational intelligence in data mining. Informatica 29, 3–12 (2005)
Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD Conference, pp. 207–216 (1993)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of International Conference on Data Engineering (ICDE 1995), pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995)
Al-Dubaee, S.A., Ahmad, N.: The bior 3.1 wavelet transform in multilingual web information retrieval. In: DMIN, pp. 707–713 (2008)
Al-Dubaee, S.A., Ahmad, N.: New direction of applied wavelet transform in multilingual web information retrieval. In: FSKD, (4), pp. 198–202 (2008)
Al-Dubaee, S.A., Ahmad, N.: A novel multilingual web information retrieval method using multiwavelet transform. UbiCC 3(3) (2008)
Al-Dubaee, S.A., Snášel, V., Ahmad, N.: Wavelet, multiwavelet and multilingualism on the internet. In: IKE (2009)
Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2008)
Antunes, C.: Acquiring background knowledge for intelligent tutoring systems. In: Proceedings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining, pp. 18–27 (2008)
Antunes, C.M., Oliveira, A.L.: Inference of Sequential Association Rules Guided by Context-Free Grammars. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 289–293. Springer, Heidelberg (2002)
Arbib, M.A. (ed.): The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)
Bandyopadhyay, S., Muthy, C.A.: Pattern clasification using genetic algorithms. Pattern Recognition Letters 16, 801–808 (1995)
Benôit, G.: Data mining. Annual Review of Information Science and Technology 36, 265–310 (2002)
Berge, Z.L.: Facilitating computer conferencing: Recommendations from the field. Educational Technology 35(1), 22–30 (1995)
Berry, M.W., Browne, M.: Lecture notes in data mining, ch. 14. World Scientific, Singapore (2006)
Blanchard, E., Razaki, R., Frasson, C.: Cross-cultural adaptation of elearning contents: a methodology. In: International Conference on E-Learning (2005)
Bouguessa, M., Dumoulin, B., Wang, S.: Identifying authoritative actors in question-answering forums: the case of yahoo! answers. In: KDD 2008: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 866–874. ACM, New York (2008)
Burdescu, D.D., Mihaescu, M.C., Logofatu, B.: Employing bayes classifier for improving learner’s proficiency. In: International Conference on Internet and Web Applications and Services, pp. 38–42 (2008), http://doi.ieeecomputersociety.org/10.1109/ICIW.2008.16
Castro, F., Nebot, A., Mugica, F.: A soft computing decision support framework to improve the e-learning experience. In: SpringSim, pp. 781–788 (2008)
Castro, F., Vellido, A., Nebot, A.: Minguillon: Finding relevant features to characterize student behavior on an e-learning system. In: Hamid, R.A. (ed.) FECS 2005, pp. 210–216 (2005)
Castro, F., Vellido, A., Nebot, A., Mugica, F.: Applying data mining techniques to e-learning problems. Studies in Computational Intelligence(SCI), vol. 62 (2007)
Chen, C.M., Hsieh, Y.L., Hsu, S.H.: Mining learner profile utilizing association rule for web-based learning diagnosis. Expert Syst. Appl. 33(1), 6–22 (2007)
Cho, Y.I.: Intelligent automatic community grouping system by multiagents. Artificial Life and Robotics 12(1-2), 284–290 (2008)
Daradoumis, T., Martinez-Mones, A., Xhafa, F.: A layered framework for evaluating on-line collaborative learning interactions. International Journal of Human-Computer Studies 64(7), 622–635 (2006)
Denev, D., Boichev, A., Nedelchev, P.: Multilingual support of e-learning systems: The bulgarian contribution. In: CompSysTech 2006 (2006)
Dolog, P., Gavriloaie, R., Nejdl, W., Brase, J.: Integrating adaptive hypermedia techniques and open RDF-based environments. In: WWW - Alternate Paper Tracks (2003)
Eberhart, R.C., Shi, Y.: Computational Intelligence: An Introduction. Morgan Kaufmann, San Francisco (2007)
Engelbrecht, A.P.: Computational Intelligence: An Introduction. J. Wiley & Sons Inc., Chichester (2007)
Falkenauer, A.A.: A survey of Evolutionary Algorithms for data Mining and Knowledge Discovery. In: Ghosh, A., Tsutsui, S. (eds.), pp. 819–845. Springer, New York (2003)
Fayyad, U., Piatetsky-Sshapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine 17, 37–54 (1996)
Fazlollahtabarand, H., Mahdavi, I.: User/tutor optimal learning path in e-learning using comprehensive neuro-fuzzy approach. Education Research Review Elsevier 4(2), 142–155 (2009)
Fernández, C.A., López, J.V., Montero, F., Gonzalez, P.: Adaptive interaction multi-agent systems in e-learning/e-teaching on the web. In: Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 144–153. Springer, Heidelberg (2003)
Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in databases: An overview. In: Knowledge Discovery in Databases, pp. 1–30. AAAI/MIT Press (1991)
García, E., Romero, C., Ventura, S., Calders, T.: Drawbacks and solutions of applying association rule mining in learning management systems. In: Proceedings of the International Workshop on Applying Data Mining in e-Learning 2007. IEEE Press, Los Alamitos (2007)
García, E., Romero, C., Ventura, S., Castro, C.D.: An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Modeling and User-Adapted Interaction 19(1-2), 99–132 (2009)
Garofalakis, M., Rastogi, R., Shim, K.: Mining sequential patterns with regular expression constraints. IEEE Transactions on Knowledge and Data Engineering 14, 530–552 (2002)
Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: ICDE 1999: Proceedings of the 15th International Conference on Data Engineering, p. 106. IEEE Computer Society, Washington (1999)
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan: Frequent pattern-projected sequential pattern mining. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining (KDD 2000), pp. 355–359. ACM, New York (2000)
Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. In: Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001), http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20%&path=ASIN/026208290X
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn., p. 842. IEEE Press, Los Alamitos (1998)
Hrad, J., Zeman, T., Hájek, J.: Multilanguage e-learning course for industrial automation. In: Learning to Live in the Knowledge Society, pp. 371–372 (2008)
Hwang, G.J., Huang, T.C.K., Tseng, C.R.: A group-desigion approach for evaluating educational web sites. Computers & Education 42, 65–86 (2004)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Survey 31(3), 264–323 (1999)
Jeong, H., Biswas, G.: Mining student behavior models in learning-by-teaching environments. In: Baker, R.S.J.d., Barnes, T., Beck, J.E. (eds.) Proceeings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining, pp. 127–136 (2008)
Jun, L., Renhou, L., Qinhua, Z.: Study on the personality mining method for learners in network learning. Journal of Xian Jiaotong University, 575–576 (2004)
Kay, J., Masionneuve, N., Yacef, K., Zaïane, O.: Mining patterns of events in students’ teamwork data. In: Proceedings of the Workshop on Educational Data Mining at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), pp. 45–52 (2006)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Klösgen, W., Zytkow, J.M. (eds.): Handbook of data mining and knowledge discovery. Oxford University Press, Inc., New York (2002)
Korfiatis, N., Poulos, M., Bokos, G.: Evaluating authoritative sources using social networks: An insight from wikipedia. Online Information Review 30(3), 252–262 (2006), http://www.korfiatis.info/papers/OISJournal_final.pdf
Kubon, V., Spousta, M.: Multilingual approach to e-learning from a monolingual perspective. In: FLAIRS Conference, pp. 229–230 (2008)
Kumar, A.: Rule-based adaptive problem generation in programming tutors and its evaluation. In: The 12th International Conference on Artificial Intelligence in Education, pp. 36–44 (2005)
Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algorithms. IEEE Transaction on Evolutionary Computation 33, 351–373 (2000)
Lee, S.H., Kim, P.J., Ahn, Y.Y., Jeong, H.: Googling hidden interactions: Web search engine based weighted network construction (2007), http://www.citebase.org/abstract?id=oai:arXiv.org:0710.3268
Li, L., Otsuka, S., Kitsuregawa, M.: Query recommendation using large-scale web access logs and web page archive. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 134–141. Springer, Heidelberg (2008)
Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V., Loumos, V.: Early and dynamic student achievement prediction in e-learning courses using neural networks. Journal of the American Society for Information Science and Technology 60(2), 372–380 (2009)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining of Knowledge Discovery 1(3), 259–289 (1997)
Martin-Bautista, M.J., Vila, M.A.: A survey of genetic feature selection in mining issues. In: Proceeding Congress on Evolutionary Computation (CEC 1999), pp. 1314–1321 (1999)
Martinovič, J., Dráždilová, P., Slaninová, K., Snášel, V.: Relation analysis in elearning. In: International Conference on Computer Information Systems and Industrial Management Applications, pp. 133–138. IEEE Computer Society, Los Alamitos (2008)
McLure-Wasko, M., Faraj, S.: Why should i share? examining social capital and knowledge contribution in electronic networks. MIS Quarterly 29(1), 35–57 (2005)
McPherson, M., Nunes, M.B.: The role of tutors as an integral part of online learning support (2009), http://www.eurodl.org/materials/contrib/2004/Maggie_MsP.html
Minaei-Bidgoli, B., Punch, W.F.: Using Genetic Algorithms for Data Mining Optimization in an Educational Web-Based System. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003)
Mitra, S., Acharya, T.: Data Mining Multimedia, Soft Computing, and Bioinformatics. J. Wiley & Sons Inc., Chichester (2003)
Monachesi, P., Lemnitzer, L., Simov, K.I.: Language technology for elearning. In: EC-TEL, pp. 667–672 (2006)
Morales, C.R., Pérez, A.R.P., Soto, S.V., Martínez, C.H., Gómez, A.Z.: Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems. In: Proceedings of 5th international Conference on Multimedia and Information and Communication Technologies in Education, M-CITE 2006 (2006)
Neji, M., Ben, A.M.: Agent-based collaborative affective e-learning framework. The Electronic Journal of e-Learning 5(2), 123–134 (2007)
Pahl, C., Donnellan, C.: Data mining technology for the evaluation of web-based teaching and learning systems. In: Proceedings of the congress e- learning (2003)
Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-c.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of 17th International Conference on Data Engineering (ICDE 2001), pp. 215–224 (2001)
Ribeiro, B., Cardoso, A.: Behavior pattern mining during the evaluation phase in an e-learning course. In: Proceeings of International Conference on Engineering and Education (2007)
Romero, C., González, P., Ventura, S., del Jesus, M.J., Herrera, F.: Evolutionary algorithms for subgroup discovery in e-learning: A practical application using moodle data. Expert Syst. Appl. 36(2), 1632–1644 (2009)
Romero, C., Gutiérrez, S., Freire, M., Ventura, S.: Mining and visualizing visited trails in web-based educational systems. In: Proceedings of Educational Data Mining 2008: 1st International Conference on Educational Data Mining (2008)
Romero, C., Ventura, S. (eds.): Data Mining in E-Learning. WIT Press, Southhampton (2006)
Romero, C., Ventura, S.: Data Mining in E-learning. WIT Press, Southampton (2006)
Romero, C., Ventura, S., Garcia, E.: Data mining in course management systems: Moodle case study and tutorial. Computers & Education 51(1), 368–384 (2008), http://dx.doi.org/10.1016/j.compedu.2007.05.016
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. In: Information Processing and Management, pp. 513–523 (1988)
Scheffer, T.: Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4), 381–395 (2005)
Schommer, C.: An unified definition of data mining (2008), http://www.citebase.org/abstract?id=oai:arXiv.org:0809.2696 , http://arxiv.org/PS_cache/arxiv/pdf/0809/0809.2696v1.pdf
Shepherd, C.: In search of the perfect e-tutor (2009), http://www.fastrak-consulting.co.uk/tactix/features/perfect_etutor.htm
Simov, K.I., Osenova, P.: Bulqa: Bulgarian-bulgarian question answering at clef 2005. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 517–526. Springer, Heidelberg (2006)
Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057. Springer, Heidelberg (1996)
Stathacopoulou, G.D., Grigoriadou, M.: Neural network-based fuzzy modeling of the student in intelligent tutoring systems. In: International Joint Conference on Neural Networks, pp. 3517–3521 (1999)
Sun, S., Joy, M., Griffiths, N.: The use of learning objects and learning styles in a multi-agent education system. In: Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications, AACE, pp. 3403–3410 (2005)
Tao, Y., Zu, D., Li, X., Du, P.: A fuzzy aggregation-based reputation model for e-learning exploitation of public domain resources. In: 4th International ICSC Symposia on Soft-Computing and Intelligent Systems for Industry (2001)
Tao, Y., Zu, D., Li, X., Du, P.: A fuzzy logic based speech extraction approach for e-learning content production. In: ICALIP 2008, pp. 298–302 (2009)
Thuillard, M.: Wavelet in Soft Computing. Word Scientific series in Robotics and intelligent systems, Singapore, vol. 25 (2001)
Thuillard, M.: Adaptive multiresolution and wavelet based search methods. International Journal of Intelligent Systems 19, 303–313 (2004)
Tzouveli, P., Mylonas, P., Kollias, S.: An intelligent e-learning system based on learner profiling and learning resources adaptation. Comput. Educ. 51(1), 224–238 (2008)
http://www.keel.es/ (2008)
http://rapid-i.com/ (2008)
http://www.moodle.org (2008)
http://weload.lernnetz.de (2008)
http://www.lt4el.eu/ (2008)
http://www.ilias.de/ (2008)
http://www.webalt.net/ (2008)
http://www.bonynetwork.eu (2008)
http://www.basistech.com/ (2008)
http://www.google.com (2009)
http://www.google.com/trends (2009)
Verdú, E., Verdú, M.J., Regueras, L.M., de Castro, J.P.: Intercultural and multilingual e-learning to bridge the digital divide. In: Human.Society@Internet, pp. 260–269 (2005)
Vialardi, C., Bravo, J., Ortigosa, A.: Improving aeh courses through log analysis. J. UCS 14(17), 2777–2798 (2008)
Wachter, R.M., Gupta, J.N.D., Quaddus, M.A.: It takes a village: Virtual communities in supporting of education. International Journal of Information Management 20(6), 473–489 (2000)
Wang, W., Weng, J.F., Su, J.M., Tseng, S.S.: Learning portfolio analysis and mining in scorm compliant environment. In: 34th Annual Frontiers in Education, FIE 2004, vol. 1, pp. 17–24 (2004)
Wickramasinghe, N., Gupta, J.N.D., Sharma, S.K.: Creating knowledge-based healthcare organizations, ch. 7. Idea Group (2004)
Yang, S.J.H., Chen, I.Y.L., Kinshuk, Chen, N.S.: Enhancing the quality of e-learning in virtual learning communities by finding quality learning content and trustworthy collaborators. Educational Technology & Society 10(2), 12 (2007)
Yin, C.Y., Luo, Q.: Personality mining system in e-learning by using improved association rules. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4130–4134 (2007), doi:10.1109/ICMLC.2007.4370869
Yu, P., Own, C., Lin, L.: On learning behavior analysis of web based interactive environment. In: Proceedings of ICCEE (2001)
Zaiane, O., Luo, J.: Web usage mining for a better web-based learning environment. In: Proceedings of conference on advanced technology for education, pp. 60–64 (2001)
Zakrzewska, D.: Cluster analysis for users’ modeling in intelligent e-learning systems. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 209–214. Springer, Heidelberg (2008)
Zakrzewska, D.: Using clustering technique for students’ grouping in intelligent e-learning systems. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 403–410. Springer, Heidelberg (2008)
Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: WWW 2007: Proceedings of the 16th international conference on World Wide Web, pp. 221–230. ACM Press, New York (2007), http://portal.acm.org/citation.cfm?id=1242603
Zhu, F., Ip, H.H.-S., Fok, A.W.P., Cao, J.: Peres: A personalized recommendation education system based on multi-agents & scorm. In: Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 31–42. Springer, Heidelberg (2008)
Zorrilla, M., Menasalvas, E., Marín, D., Mora, E., Segovia, J.: Web Usage Mining Project for Improving Web-Based Learning Sites. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 205–210. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dráždilová, P., Obadi, G., Slaninová, K., Al-Dubaee, S., Martinovič, J., Snášel, V. (2010). Computational Intelligence Methods for Data Analysis and Mining of eLearning Activities. In: Xhafa, F., Caballé, S., Abraham, A., Daradoumis, T., Juan Perez, A.A. (eds) Computational Intelligence for Technology Enhanced Learning. Studies in Computational Intelligence, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11224-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-11224-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11223-2
Online ISBN: 978-3-642-11224-9
eBook Packages: EngineeringEngineering (R0)