Abstract
This paper presents PERISCOPE - an online distributed performance analysis tool that searches for a wide range of performance bottlenecks in parallel applications. It consists of a set of agents that capture and analyze application and hardware-related properties in an autonomous fashion. The paper focuses on the Periscope design, the different search methodologies, and the steps involved to do an online performance analysis. A new graphical user-friendly interface based on Eclipse is introduced. Through the use of this new easy-to-use graphical interface, remote execution, selection of the type of analysis, and the inspection of the found properties can be performed in an intuitive and easy way. In addition, a real-world application, namely, the GENE code, a grand challenge problem of plasma physics is analyzed using Periscope. The results are illustrated in terms of found properties and scalability issues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler, Matthias S. Müller and Wolfgang E. Nagel. The Vampir Performance Analysis Tool-Set. In Proc. of the 2nd Int. Work. on Parallel Tools for HPC, HLRS, Stuttgart, pages 139-155, Springer Publications, July 2008.
Chen, Y. and Parker, S. E. A δf particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations. In Comput. Phys. 189, 2 (Aug. 2003), DOI: http://dx.doi.org/10.1016/S0021-9991(03)00228-6. pages 463-475, 2003.
Eric Clayberg and Dan Rubel. Eclipse Plug-ins. In Addison-Wesley Professional, ISBN 978-0-321-55346-1 pages 107-135, 2008.
Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable parallel trace-based performance analysis. In Proc. of the 13th Eur. PVM/MPI Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2006), pages 303–312, Bonn, Germany, 2006.
M. Gerndt and K. Fürlinger. Specification and detection of performance problems with ASL. Conc. and Computation: Prac. & Exp., 19(11):1451–1464, Aug 2007.
Michael Gerndt and Edmond Kereku. Search strategies for automatic performance analysis tools. In Anne-Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par 2007, volume 4641 of LNCS, pages 129–138. Springer, 2007.
Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling. http://mpip.sourceforge.net, 2008.
F. Jenko. Massively parallel vlasov simulation of electromagnetic drift-wave turbulence. In Comp. Phys. Comm. 125 2000.
B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance measurement tool. IEEE Computer, Vol. 28, No. 11, pp. 37-46, 1995.
Philip C. Roth and Barton P. Miller. The distributed performance consultant and the sub-graph folding algorithm: On-line automated performance diagnosis on thousands of processes. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’06), March 2006.
Shajulin Benedict, Matthias Brehm, Michael Gerndt, Carla Guillen, Wolfram Hesse and Ventsislav Petkov. Automatic Performance Analysis of Large Scale Simulations. In PROPER 2009, (in press), Springer Publishers 2009.
Sameer S. Shende and Allen D. Malony. The TAU parallel performance system. International Journal of High Performance Computing Applications, ACTS Collection Special Issue, 2005.
Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid MPI/OpenMP applications. In Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2003), pages 13–22. IEEE Computer Society, February 2003.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benedict, S., Petkov, V., Gerndt, M. (2010). PERISCOPE: An Online-Based Distributed Performance Analysis Tool. In: Müller, M., Resch, M., Schulz, A., Nagel, W. (eds) Tools for High Performance Computing 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11261-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-11261-4_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11260-7
Online ISBN: 978-3-642-11261-4
eBook Packages: Computer ScienceComputer Science (R0)